Let $$ B = \begin{bmatrix} 1 & 3 \\ 1 & 5 \end{bmatrix} $$ and $A$ be a $2 \times 2$ matrix such that $$ AB^{-1} = A^{-1}. $$ If $BCB^{-1} = A$ and $$ C^4 + \alpha C^2 + \beta I = O, $$ then $2\beta - \alpha$ is equal to:
We are given the following matrix relations:
\(BCB^{-1} = A\)
\(\Rightarrow (BCB^{-1})(BCB^{-1}) = A \cdot A\)
\(\Rightarrow BCI \cdot CB^{-1} = A^2 \quad \text{(since \( B^{-1}B = I \))}\)
\(\Rightarrow BC^2 B^{-1} = A^2\)
\(\Rightarrow B^{-1}(BC^2 B^{-1})B = B^{-1}A^2B\)
\(\Rightarrow B^{-1}C^2 B = B^{-1}A^2B\)
From the above relations, we can use the fact that:
\[ C^2 = A^{-1} \cdot A \cdot B \Rightarrow C^2 = B \]
Next, since \(AB^{-1} = A^{-1}\), we can manipulate the expression for \(C^2\):
\[ AB^{-1} \cdot A = A^{-1} \Rightarrow B^{-1}A = A^{-1} \cdot A^{-1} \]
Thus, \(C^2\) and the matrix \(B\) satisfy the characteristic equation:
\[ |C^2 - \lambda I| = 0 \] \[ |B - \lambda I| = 0 \]
Now, we solve the characteristic equation:
\(\begin{vmatrix} 1 - \lambda & 3 \\ 1 & 5 - \lambda \end{vmatrix} = 0\)
\(\Rightarrow (1 - \lambda)(5 - \lambda) - 3 = 0\)
\(\Rightarrow \lambda^2 - 6\lambda + 5 - 3 = 0\)
\(\Rightarrow \lambda^2 - 6\lambda + 2 = 0\)
\(\Rightarrow \beta^2 - 6\beta + 2 = 0\)
\(\Rightarrow C^4 - 6C^2 + 2I = 0\)
Thus, solving the equation gives us:
\[ \alpha = -6, \quad \beta = 2 \]
Finally, we calculate:
\[ 2\beta - \alpha = 2 \times 2 - (-6) = 4 + 6 = 10 \]
Thus, the correct answer is:
\(\boxed{10}\)
Match List-I with List-II
List-I (Matrix) | List-II (Inverse of the Matrix) |
---|---|
(A) \(\begin{bmatrix} 1 & 7 \\ 4 & -2 \end{bmatrix}\) | (I) \(\begin{bmatrix} \tfrac{2}{15} & \tfrac{1}{10} \\[6pt] -\tfrac{1}{15} & \tfrac{1}{5} \end{bmatrix}\) |
(B) \(\begin{bmatrix} 6 & -3 \\ 2 & 4 \end{bmatrix}\) | (II) \(\begin{bmatrix} \tfrac{1}{5} & -\tfrac{2}{15} \\[6pt] -\tfrac{1}{10} & \tfrac{7}{30} \end{bmatrix}\) |
(C) \(\begin{bmatrix} 5 & 2 \\ -5 & 4 \end{bmatrix}\) | (III) \(\begin{bmatrix} \tfrac{1}{15} & \tfrac{7}{30} \\[6pt] \tfrac{2}{15} & -\tfrac{1}{30} \end{bmatrix}\) |
(D) \(\begin{bmatrix} 7 & 4 \\ 3 & 6 \end{bmatrix}\) | (IV) \(\begin{bmatrix} \tfrac{2}{15} & -\tfrac{1}{15} \\[6pt] \tfrac{1}{6} & \tfrac{1}{6} \end{bmatrix}\) |
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: