Let $$ B = \begin{bmatrix} 1 & 3 \\ 1 & 5 \end{bmatrix} $$ and $A$ be a $2 \times 2$ matrix such that $$ AB^{-1} = A^{-1}. $$ If $BCB^{-1} = A$ and $$ C^4 + \alpha C^2 + \beta I = O, $$ then $2\beta - \alpha$ is equal to:
We are given that \( B = \begin{bmatrix} 1 & 3 \\ 1 & 5 \end{bmatrix} \) and \( A \) is a \( 2 \times 2 \) matrix such that \( AB^{-1} = A^{-1} \). Additionally, \( BCB^{-1} = A \) and \( C^4 + \alpha C^2 + \beta I = O \). We must find the value of \( 2\beta - \alpha \).
\[ B^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \]
\[ B^{-1} = \frac{1}{(1)(5) - (3)(1)} \begin{bmatrix} 5 & -3 \\ -1 & 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 5 & -3 \\ -1 & 1 \end{bmatrix} \]
\[ A = AA^{-1}B = IB = B \]
\[ BCB^{-1} = \begin{bmatrix} 1 & 3 \\ 1 & 5 \end{bmatrix} \]
\[ C^4 + \alpha C^2 + \beta I = O \]
\[ \lambda^4 + \alpha \lambda^2 + \beta = 0 \]
\[ 2\beta - \alpha = 2 \times 8 - 6 = 10 \]
Thus, the correct answer is 10.
We are given the following matrix relations:
\(BCB^{-1} = A\)
\(\Rightarrow (BCB^{-1})(BCB^{-1}) = A \cdot A\)
\(\Rightarrow BCI \cdot CB^{-1} = A^2 \quad \text{(since \( B^{-1}B = I \))}\)
\(\Rightarrow BC^2 B^{-1} = A^2\)
\(\Rightarrow B^{-1}(BC^2 B^{-1})B = B^{-1}A^2B\)
\(\Rightarrow B^{-1}C^2 B = B^{-1}A^2B\)
From the above relations, we can use the fact that:
\[ C^2 = A^{-1} \cdot A \cdot B \Rightarrow C^2 = B \]
Next, since \(AB^{-1} = A^{-1}\), we can manipulate the expression for \(C^2\):
\[ AB^{-1} \cdot A = A^{-1} \Rightarrow B^{-1}A = A^{-1} \cdot A^{-1} \]
Thus, \(C^2\) and the matrix \(B\) satisfy the characteristic equation:
\[ |C^2 - \lambda I| = 0 \] \[ |B - \lambda I| = 0 \]
Now, we solve the characteristic equation:
\(\begin{vmatrix} 1 - \lambda & 3 \\ 1 & 5 - \lambda \end{vmatrix} = 0\)
\(\Rightarrow (1 - \lambda)(5 - \lambda) - 3 = 0\)
\(\Rightarrow \lambda^2 - 6\lambda + 5 - 3 = 0\)
\(\Rightarrow \lambda^2 - 6\lambda + 2 = 0\)
\(\Rightarrow \beta^2 - 6\beta + 2 = 0\)
\(\Rightarrow C^4 - 6C^2 + 2I = 0\)
Thus, solving the equation gives us:
\[ \alpha = -6, \quad \beta = 2 \]
Finally, we calculate:
\[ 2\beta - \alpha = 2 \times 2 - (-6) = 4 + 6 = 10 \]
Thus, the correct answer is:
\(\boxed{10}\)
If \( A \), \( B \), and \( \left( \text{adj}(A^{-1}) + \text{adj}(B^{-1}) \right) \) are non-singular matrices of the same order, then the inverse of \[ A \left( \text{adj}(A^{-1}) + \text{adj}(B^{-1}) \right) B \] is equal to:
If the system of equations \[ (\lambda - 1)x + (\lambda - 4)y + \lambda z = 5 \] \[ \lambda x + (\lambda - 1)y + (\lambda - 4)z = 7 \] \[ (\lambda + 1)x + (\lambda + 2)y - (\lambda + 2)z = 9 \] has infinitely many solutions, then \( \lambda^2 + \lambda \) is equal to:
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 