Let (a+bx+cx²)10 = $ \sum_{i=0}^{20} $ pixi, a,b,c∈N. If p1=20 and P₂ = 210, then 2(a+b+c) is equal to
The total number of three-digit numbers, divisible by 3, which can be formed using the digits 1,3,5,8, if repetition of digits is allowed, is
Let the determinant of a square matrix A of order \( m \) be \( m - n \), where \( m \) and \( n \) satisfy \( 4m + n = 22 \) and \( 17m + 4n = 93 \). If \( \text{det} (n \, \text{adj}(\text{adj}(mA))) = 3^a 5^b 6^c \), then \( a + b + c \) is equal to: