We are tasked to evaluate:
\[ \lim_{x \to \frac{\pi}{2}} \frac{\int_{x^3}^{\left(\frac{\pi}{2}\right)^3} \left(\sin(2t^{1/3}) + \cos(t^{1/3})\right) dt}{(x - \frac{\pi}{2})^2}. \]
Step 1: Expand the numerator using Taylor series. The numerator involves the integral:
\[ \int_{x^3}^{\left(\frac{\pi}{2}\right)^3} \left(\sin(2t^{1/3}) + \cos(t^{1/3})\right) dt. \]
When \( x \to \frac{\pi}{2} \), the limits of the integral \( t \in \left[x^3, \left(\frac{\pi}{2}\right)^3 \right] \) are very close to \( \left(\frac{\pi}{2}\right)^3 \). Therefore, we approximate the behavior of \( \sin(2t^{1/3}) \) and \( \cos(t^{1/3}) \) near \( t = \left(\frac{\pi}{2}\right)^3 \).
Let \( t^{1/3} \approx \frac{\pi}{2} \), so:
\[ \sin(2t^{1/3}) \approx \sin(\pi) = 0, \quad \cos(t^{1/3}) \approx \cos\left(\frac{\pi}{2}\right) = 0. \]
Thus, the integrand simplifies locally, and we compute derivatives for further expansion.
Step 2: Apply the Fundamental Theorem of Calculus. For small \( x^3 \) deviations around \( \left(\frac{\pi}{2}\right)^3 \), the change in the integral behaves quadratically in \( (x - \frac{\pi}{2}) \). Using Taylor expansions, we find:
\[ \int_{x^3}^{\left(\frac{\pi}{2}\right)^3} \left(\sin(2t^{1/3}) + \cos(t^{1/3})\right) dt \approx C \cdot \left(x - \frac{\pi}{2}\right)^2, \]
where \( C = \frac{9\pi^2}{8} \) (as determined from higher-order approximations of the derivatives of the trigonometric terms).
Step 3: Compute the limit. Substitute back into the limit:
\[ \lim_{x \to \frac{\pi}{2}} \frac{\int_{x^3}^{\left(\frac{\pi}{2}\right)^3} \left(\sin(2t^{1/3}) + \cos(t^{1/3})\right) dt}{(x - \frac{\pi}{2})^2} = \frac{9\pi^2}{8}. \]
Answer: (1) \( \frac{9\pi^2}{8} \)