Given:
\[A = \begin{pmatrix} 2 & -5 \\ 3 & m \end{pmatrix}, \quad B = \begin{pmatrix} 20 \\ m \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \end{pmatrix}\]
From the equations:
\(2x - 5y = 20\) (1)
\(3x + my = m\) (2)
We get:
\[y = \frac{2m - 60}{2m + 15}\]
For \(y < 0\), \(m \in \left(-\frac{15}{2}, 30\right)\).
Similarly:
\[x = \frac{25m}{2m + 15}\]
For \(x < 0\), \(m \in \left(-\frac{15}{2}, 0\right)\).
Thus, combining conditions:
\[m \in \left(-\frac{15}{2}, 0\right)\]
The determinant of matrix \(A\) is:
\[|A| = 2m + 15\]
Now:
\[8 \int_{-\frac{15}{2}}^{0} (2m + 15) \, dm = 8 \left[ m^2 + 15m \right]_{-\frac{15}{2}}^{0}\]
\[= 8 \left\{ \frac{225}{4} - \frac{225}{2} \right\}\]
\[= 8 \times \frac{225}{4} = 450\]
Final Answer: 450
If the system of equations \[ (\lambda - 1)x + (\lambda - 4)y + \lambda z = 5 \] \[ \lambda x + (\lambda - 1)y + (\lambda - 4)z = 7 \] \[ (\lambda + 1)x + (\lambda + 2)y - (\lambda + 2)z = 9 \] has infinitely many solutions, then \( \lambda^2 + \lambda \) is equal to:
If \[ A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}, \] find \( A^{-1} \).
Using \( A^{-1} \), solve the following system of equations:
\[ \begin{aligned} 2x - 3y + 5z &= 11 \quad \text{(1)} \\ 3x + 2y - 4z &= -5 \quad \text{(2)} \\ x + y - 2z &= -3 \quad \text{(3)} \end{aligned} \]