To find the square of the distance of the image of a point \( (6, 1, 5) \) on the given line \(\frac{x - 1}{3} = \frac{y}{2} = \frac{z - 2}{4}\) from the origin, follow these steps:
Thus, the square of the distance is \(62\).
Let \( M(3\lambda + 1, 2\lambda, 4\lambda + 2) \)
\(\overrightarrow{AM} \cdot \mathbf{b} = 0\)
\(\implies 9\lambda - 15 + 4\lambda - 2 + 16\lambda - 12 = 0\)
\(\implies 29\lambda = 29 \implies \lambda = 1\)
So,
\(M(4, 2, 6), \quad I = (2, 3, 7)\)
Hence Distance =
\(\sqrt{4 + 9 + 49} = \sqrt{62}\)
Therefore, the square of the distance of the image of the point is 62.
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to