Let \( M(3\lambda + 1, 2\lambda, 4\lambda + 2) \)
\(\overrightarrow{AM} \cdot \mathbf{b} = 0\)
\(\implies 9\lambda - 15 + 4\lambda - 2 + 16\lambda - 12 = 0\)
\(\implies 29\lambda = 29 \implies \lambda = 1\)
So,
\(M(4, 2, 6), \quad I = (2, 3, 7)\)
Hence Distance =
\(\sqrt{4 + 9 + 49} = \sqrt{62}\)
Therefore, the square of the distance of the image of the point is 62.
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: