Let $X_1, X_2, \ldots, X_n$ be a random sample from $U(\theta - 0.5, \theta + 0.5)$ distribution, where $\theta \in \mathbb{R}$. If $X_{(1)} = \min(X_1, X_2, \ldots, X_n)$ and $X_{(n)} = \max(X_1, X_2, \ldots, X_n)$, then which one of the following estimators is NOT a maximum likelihood estimator (MLE) of $\theta$?