Let the sample mean based on a random sample from Exp($\lambda$) distribution be 3.7. Then the maximum likelihood estimate of $1 - e^{-\lambda}$ equals ........... (round off to two decimal places).
Step 1: Recall MLE for exponential distribution.
For $X_1, X_2, \ldots, X_n \sim \text{Exp}(\lambda)$, the probability density function is
\[
f(x; \lambda) = \lambda e^{-\lambda x}, x > 0.
\]
The log-likelihood is
\[
\ln L = n \ln \lambda - \lambda \sum X_i.
\]
Step 2: Differentiate and set derivative to zero.
\[
\frac{d(\ln L)}{d\lambda} = \frac{n}{\lambda} - \sum X_i = 0 $\Rightarrow$ \hat{\lambda} = \frac{n}{\sum X_i} = \frac{1}{\bar{X}}.
\]
Step 3: Substitute given mean.
Given $\bar{X} = 3.7$,
\[
\hat{\lambda} = \frac{1}{3.7} = 0.27027.
\]
Step 4: Compute required expression.
\[
1 - e^{-\lambda} = 1 - e^{-0.27027} = 1 - 0.7639 = 0.2361.
\]
Step 5: Round off.
\[
\boxed{1 - e^{-\hat{\lambda}} = 0.23.}
\]
Let \( X_1, X_2, \dots, X_7 \) be a random sample from a population having the probability density function \[ f(x) = \frac{1}{2} \lambda^3 x^2 e^{-\lambda x}, \quad x>0, \] where \( \lambda>0 \) is an unknown parameter. Let \( \hat{\lambda} \) be the maximum likelihood estimator of \( \lambda \), and \( E(\hat{\lambda} - \lambda) = \alpha \lambda \) be the corresponding bias, where \( \alpha \) is a real constant. Then the value of \( \frac{1}{\alpha} \) equals __________ (answer in integer).