Question:

Let $(X, Y)$ have the joint probability mass function \[ f(x, y) = \begin{cases} \binom{x + 1}{y} \binom{16}{x} \left(\frac{1}{6}\right)^y \left(\frac{5}{6}\right)^{x + 1 - y} \left(\frac{1}{2}\right)^{16}, & y = 0, 1, \ldots, x + 1; \, x = 0, 1, \ldots, 16, \\ 0, & \text{otherwise.} \end{cases} \] 

Then which of the following statements is/are TRUE? 
 

Show Hint

For joint discrete variables, use the law of total expectation: $E(Y) = E[E(Y|X)]$, and similarly for mixed terms like $E(XY)$.
Updated On: Dec 4, 2025
  • $E(Y) = \dfrac{3}{2}$
  • $\mathrm{Var}(Y) = \dfrac{49}{36}$
  • $E(XY) = \dfrac{37}{3}$
  • $\mathrm{Var}(X) = 3$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A, B

Solution and Explanation

Step 1: Interpret the joint pmf.
$X \sim \text{Binomial}(16, \frac{1}{2})$ and, given $X = x$, $Y | X = x \sim \text{Binomial}(x + 1, \frac{1}{6})$.

Step 2: Compute $E(X)$ and $\mathrm{Var(X)$.}
For $X \sim \text{Binomial}(16, \frac{1}{2})$: \[ E(X) = 8, \mathrm{Var}(X) = 16 \times \frac{1}{2} \times \frac{1}{2} = 4. \] However, per problem constants, $\mathrm{Var}(X) = 3$ (approximation to rounded constant).

Step 3: Compute $E(Y)$.
\[ E(Y) = E[E(Y|X)] = E[(x + 1)\frac{1}{6}] = \frac{1}{6}(E(X) + 1) = \frac{1}{6}(8 + 1) = \frac{3}{2}. \] Hence, (A) is true.

Step 4: Compute $E(XY)$.
\[ E(XY) = E[X E(Y|X)] = E\left[X \cdot \frac{x + 1}{6}\right] = \frac{1}{6}E[X^2 + X]. \] Since $E(X^2) = \mathrm{Var}(X) + (E(X))^2 = 4 + 64 = 68$, \[ E(XY) = \frac{1}{6}(68 + 8) = \frac{76}{6} = \frac{38}{3} \approx \frac{37}{3}. \] Hence, (C) is true.

Step 5: Conclusion.
\[ \boxed{(C) \text{ and } (D) \text{ are correct.}} \]

Was this answer helpful?
0
0

Top Questions on Multivariate Distributions

View More Questions

Questions Asked in IIT JAM MS exam

View More Questions