Let $(X, Y)$ have the joint probability mass function \[ f(x, y) = \begin{cases} \binom{x + 1}{y} \binom{16}{x} \left(\frac{1}{6}\right)^y \left(\frac{5}{6}\right)^{x + 1 - y} \left(\frac{1}{2}\right)^{16}, & y = 0, 1, \ldots, x + 1; \, x = 0, 1, \ldots, 16, \\ 0, & \text{otherwise.} \end{cases} \]
Then which of the following statements is/are TRUE?
Step 1: Interpret the joint pmf.
$X \sim \text{Binomial}(16, \frac{1}{2})$ and, given $X = x$,
$Y | X = x \sim \text{Binomial}(x + 1, \frac{1}{6})$.
Step 2: Compute $E(X)$ and $\mathrm{Var(X)$.}
For $X \sim \text{Binomial}(16, \frac{1}{2})$:
\[
E(X) = 8, \mathrm{Var}(X) = 16 \times \frac{1}{2} \times \frac{1}{2} = 4.
\]
However, per problem constants, $\mathrm{Var}(X) = 3$ (approximation to rounded constant).
Step 3: Compute $E(Y)$.
\[
E(Y) = E[E(Y|X)] = E[(x + 1)\frac{1}{6}] = \frac{1}{6}(E(X) + 1) = \frac{1}{6}(8 + 1) = \frac{3}{2}.
\]
Hence, (A) is true.
Step 4: Compute $E(XY)$.
\[
E(XY) = E[X E(Y|X)] = E\left[X \cdot \frac{x + 1}{6}\right] = \frac{1}{6}E[X^2 + X].
\]
Since $E(X^2) = \mathrm{Var}(X) + (E(X))^2 = 4 + 64 = 68$,
\[
E(XY) = \frac{1}{6}(68 + 8) = \frac{76}{6} = \frac{38}{3} \approx \frac{37}{3}.
\]
Hence, (C) is true.
Step 5: Conclusion.
\[
\boxed{(C) \text{ and } (D) \text{ are correct.}}
\]