Let $X_1, X_2, \ldots, X_n$ be a random sample from $\text{Exp}(\theta)$ distribution, where $\theta \in (0, \infty)$. If $\bar{X} = \dfrac{1}{n}\sum_{i=1}^n X_i$, then a 95% confidence interval for $\theta$ is
Step 1: Distribution of $\sum X_i$.
For $X_i \sim \text{Exp}(\theta)$, we have
\[
\sum_{i=1}^{n} X_i \sim \text{Gamma}(n, \theta).
\]
Equivalently,
\[
\frac{2n\bar{X}}{\theta} \sim \chi^2_{2n}.
\]
Step 2: Confidence interval for $\theta$.
For a 95% confidence level:
\[
P\left(\chi^2_{2n, 0.05} \le \frac{2n\bar{X}}{\theta} \le \chi^2_{2n, 0.95}\right) = 0.95.
\]
Rearranging for $\theta$,
\[
P\left(\frac{2n\bar{X}}{\chi^2_{2n, 0.95}} \le \theta \le \frac{2n\bar{X}}{\chi^2_{2n, 0.05}}\right) = 0.95.
\]
Step 3: Upper and lower bounds.
The lower bound corresponds to $\frac{\chi^2_{2n, 0.05}}{2n\bar{X}}$ if expressed inversely in terms of rate parameter, giving
\[
\boxed{\left(\frac{\chi^2_{2n, 0.05}}{2n\bar{X}}, \infty\right)}.
\]
Step 4: Conclusion.
Hence, the correct 95% confidence interval is as in option (D).
Let \( X_1, X_2, \dots, X_7 \) be a random sample from a population having the probability density function \[ f(x) = \frac{1}{2} \lambda^3 x^2 e^{-\lambda x}, \quad x>0, \] where \( \lambda>0 \) is an unknown parameter. Let \( \hat{\lambda} \) be the maximum likelihood estimator of \( \lambda \), and \( E(\hat{\lambda} - \lambda) = \alpha \lambda \) be the corresponding bias, where \( \alpha \) is a real constant. Then the value of \( \frac{1}{\alpha} \) equals __________ (answer in integer).