Let $X_1, X_2, \ldots, X_n$ be a random sample from $\text{Exp}(\theta)$ distribution, where $\theta \in (0, \infty)$. If $\bar{X} = \dfrac{1}{n}\sum_{i=1}^n X_i$, then a 95% confidence interval for $\theta$ is
$\left(0, \dfrac{\chi^2_{2n, 0.95}}{n\bar{X}}\right]$
$\left[\dfrac{\chi^2_{2n, 0.95}}{n\bar{X}}, \infty\right)$
$\left(0, \dfrac{\chi^2_{2n, 0.05}}{2n\bar{X}}\right]$
$\left[\dfrac{\chi^2_{2n, 0.05}}{2n\bar{X}}, \infty\right)$
Step 1: Identify the sampling distribution
For exponential distribution with mean $\theta$, the sum $T = \sum_{i=1}^n X_i$ follows a Gamma distribution with shape parameter $n$ and scale parameter $\theta$.
A key property is that: $$\frac{2T}{\theta} = \frac{2n\bar{X}}{\theta} \sim \chi^2_{2n}$$
Step 2: Set up the confidence interval
For a 95% confidence level, we use the chi-square distribution to establish bounds. Since we're dealing with a scale parameter $\theta$ that must be positive, we construct a one-sided upper confidence interval.
The appropriate form uses: $$P\left(\frac{2n\bar{X}}{\theta} \leq \chi^2_{2n,0.05}\right) = 0.95$$
Step 3: Solve for $\theta$
Rearranging the inequality: $$\frac{2n\bar{X}}{\theta} \leq \chi^2_{2n,0.05}$$
$$\theta \geq \frac{2n\bar{X}}{\chi^2_{2n,0.05}}$$
Since $\theta > 0$, the 95% confidence interval is: $$\left(0, \frac{\chi^2_{2n,0.05}}{2n\bar{X}}\right]$$
This provides an upper confidence bound for the exponential parameter $\theta$ based on the observed sample mean.
Answer: (C) $\left(0, \frac{\chi^2_{2n,0.05}}{2n\bar{X}}\right]$
Let \( X_1, X_2, \dots, X_7 \) be a random sample from a population having the probability density function \[ f(x) = \frac{1}{2} \lambda^3 x^2 e^{-\lambda x}, \quad x>0, \] where \( \lambda>0 \) is an unknown parameter. Let \( \hat{\lambda} \) be the maximum likelihood estimator of \( \lambda \), and \( E(\hat{\lambda} - \lambda) = \alpha \lambda \) be the corresponding bias, where \( \alpha \) is a real constant. Then the value of \( \frac{1}{\alpha} \) equals __________ (answer in integer).