Let $\{X_n\}_{n \ge 1}$ be a sequence of i.i.d. random variables such that \[ P(X_1 = 0) = \frac{1}{4}, P(X_1 = 1) = \frac{3}{4}. \] Define \[ U_n = \frac{1}{n} \sum_{i=1}^n X_i \,\,\text{and} \,\, V_n = \frac{1}{n} \sum_{i=1}^n (1 - X_i)^2, n = 1, 2, \ldots \] Then which of the following statements is/are TRUE?
Step 1: Find distributions
Since $X_i \in {0, 1}$:
For $(1-X_i)^2$:
So $E((1-X_i)^2) = 1 \cdot \frac{1}{4} + 0 \cdot \frac{3}{4} = \frac{1}{4}$
And $\text{Var}((1-X_i)^2) = E((1-X_i)^4) - [E((1-X_i)^2)]^2 = \frac{1}{4} - \frac{1}{16} = \frac{3}{16}$
Step 2: Apply Law of Large Numbers
By SLLN: $$U_n \xrightarrow{P} E(X_1) = \frac{3}{4}$$ $$V_n \xrightarrow{P} E((1-X_1)^2) = \frac{1}{4}$$
Step 3: Analyze each option
(A) $\lim_{n \to \infty} P\left(\left|U_n - \frac{3}{4}\right| < \frac{1}{100}\right) = 1$
Since $U_n \xrightarrow{P} \frac{3}{4}$, for any $\epsilon > 0$: $$\lim_{n \to \infty} P\left(\left|U_n - \frac{3}{4}\right| < \epsilon\right) = 1$$
With $\epsilon = \frac{1}{100}$, this is TRUE
(B) $\lim_{n \to \infty} P\left(\left|U_n - \frac{3}{4}\right| > \frac{1}{100}\right) = 0$
This is the complement of (A), so it's also TRUE
(C) $\lim_{n \to \infty} P\left(\sqrt{n}\left(U_n - \frac{3}{4}\right) \leq 1\right) = \Phi(2)$
By CLT: $\sqrt{n}\left(U_n - \frac{3}{4}\right) \xrightarrow{d} N\left(0, \frac{3}{16}\right)$
So: $\frac{\sqrt{n}(U_n - 3/4)}{\sqrt{3/16}} \xrightarrow{d} N(0,1)$
$$P\left(\sqrt{n}\left(U_n - \frac{3}{4}\right) \leq 1\right) = P\left(\frac{\sqrt{n}(U_n - 3/4)}{\sqrt{3/16}} \leq \frac{1}{\sqrt{3/16}}\right) \to \Phi\left(\frac{4}{\sqrt{3}}\right) = \Phi\left(\frac{4\sqrt{3}}{3}\right)$$
This does NOT equal $\Phi(2)$, so FALSE
(D) $\lim_{n \to \infty} P\left(\sqrt{n}\left(V_n - \frac{1}{4}\right) \leq 1\right) = \Phi\left(\frac{4}{\sqrt{3}}\right)$
By CLT: $\sqrt{n}\left(V_n - \frac{1}{4}\right) \xrightarrow{d} N\left(0, \frac{3}{16}\right)$
$$P\left(\sqrt{n}\left(V_n - \frac{1}{4}\right) \leq 1\right) \to \Phi\left(\frac{1}{\sqrt{3/16}}\right) = \Phi\left(\frac{4}{\sqrt{3}}\right)$$
This is TRUE
Answer: (A), (B), and (D) are true
