Let $\{X_n\}_{n \ge 1}$ be a sequence of i.i.d. random variables such that \[ P(X_1 = 0) = \frac{1}{4}, P(X_1 = 1) = \frac{3}{4}. \] Define \[ U_n = \frac{1}{n} \sum_{i=1}^n X_i \text{and} V_n = \frac{1}{n} \sum_{i=1}^n (1 - X_i)^2, n = 1, 2, \ldots \] Then which of the following statements is/are TRUE?
Step 1: Mean and variance of $X_i$.
\[
E(X_i) = 0 \times \frac{1}{4} + 1 \times \frac{3}{4} = \frac{3}{4}, \mathrm{Var}(X_i) = \frac{3}{4}\left(1 - \frac{3}{4}\right) = \frac{3}{16}.
\]
Step 2: Apply Law of Large Numbers (LLN).
By LLN, $U_n \xrightarrow{p} E(X_i) = \frac{3}{4}$.
Hence,
\[
\lim_{n \to \infty} P\left(|U_n - \frac{3}{4}| < \epsilon\right) = 1,
\]
so (A) and (B) are both true.
Step 3: Apply Central Limit Theorem (CLT).
By CLT,
\[
\sqrt{n}\left(U_n - \frac{3}{4}\right) \xrightarrow{d} N\left(0, \frac{3}{16}\right).
\]
Hence,
\[
P\left(\sqrt{n}\left(U_n - \frac{3}{4}\right) \le 1\right) \approx \Phi\left(\frac{1}{\sqrt{3/16}}\right) = \Phi(2.309) \approx \Phi(2).
\]
Thus, (C) is true.
Step 4: For $V_n$.
Since $(1 - X_i)^2 = 1 - 2X_i + X_i^2$, expectation depends on $E(X_i)$, not on variance. Hence $V_n$ does not follow the same limiting distribution; (D) is incorrect.
Step 5: Conclusion.
\[
\boxed{(A), (B), \text{ and } (C) \text{ are correct.}}
\]
