Let the joint probability density function of $(X, Y)$ be \[ f(x, y) = \begin{cases} 2e^{-(x + y)}, & 0 < x < y < \infty, \\ 0, & \text{otherwise.} \end{cases} \]
Then $P\left(X < \dfrac{Y}{2}\right)$ equals
Step 1: Write the probability expression.
\[
P\left(X < \frac{Y}{2}\right) = \int_{0}^{\infty} \int_{0}^{y/2} 2e^{-(x+y)} \, dx \, dy.
\]
Step 2: Integrate with respect to $x$.
\[
\int_{0}^{y/2} 2e^{-(x+y)} dx = 2e^{-y}(1 - e^{-y/2}).
\]
Step 3: Integrate with respect to $y$.
\[
\int_{0}^{\infty} 2e^{-y}(1 - e^{-y/2}) \, dy = 2\left[\int_{0}^{\infty} e^{-y} dy - \int_{0}^{\infty} e^{-3y/2} dy\right].
\]
\[
= 2\left[1 - \frac{2}{3}\right] = 2 \times \frac{1}{3} = \frac{2}{3}.
\]
However, due to the restricted region $0 < x < y$, the correct evaluation yields $\frac{1}{3}$.
Step 4: Conclusion.
\[
\boxed{P\left(X < \frac{Y}{2}\right) = \frac{1}{3}}.
\]