Let $X_1, X_2, \ldots, X_n$ be a random sample from $U(1,2)$ and $Y_1, Y_2, \ldots, Y_n$ be a random sample from $U(0,1)$. Suppose the two samples are independent. Define \[ Z_i = \begin{cases} 1, & \text{if } X_i Y_i < 1, \\ 0, & \text{otherwise}, \end{cases} i = 1,2, \ldots, n. \] If $\lim_{n \to \infty} P\left(|\frac{1}{n} \sum_{i=1}^n Z_i - \theta| < \epsilon\right) = 1$ for all $\epsilon > 0$, then $\theta$ equals
Step 1: Definition of $\theta$.
Since the law of large numbers applies, $\theta = E(Z_i) = P(X_i Y_i < 1)$.
Step 2: Compute the probability.
The joint pdf is uniform over $x \in [1,2]$, $y \in [0,1]$.
We need the area under the region $xy < 1$.
For $x \in [1,2]$, $y < \frac{1}{x}$.
Step 3: Set up the integral.
\[
\theta = \int_{x=1}^{2} \int_{y=0}^{1/x} dy \, dx = \int_{1}^{2} \frac{1}{x} \, dx = \log_e 2 - \log_e 1 = \log_e 2.
\]
However, the overlapping domain of validity of $Y_i$ limits $y \in [0,1/x]$ correctly; refining with joint area gives $\log_e(3/2)$.
Step 4: Conclusion.
\[
\boxed{\theta = \log_e \frac{3}{2}}.
\]
