Step 1: Recognize the distribution.
Each $X_i^2 \sim \chi^2(1)$, so the denominator $\sum X_i^2 \sim \chi^2(5)$.
Step 2: Use symmetry of components.
Since all $X_i$ are i.i.d.,
\[
E\left(\frac{X_1^2}{\sum X_i^2}\right) = E\left(\frac{X_2^2}{\sum X_i^2}\right) = \cdots = E\left(\frac{X_5^2}{\sum X_i^2}\right).
\]
Adding all,
\[
E\left(\frac{\sum X_i^2}{\sum X_i^2}\right) = 1 $\Rightarrow$ 5E(W) = 1 $\Rightarrow$ E(W) = \frac{1}{5}.
\]
Step 3: Conclusion.
\[
\boxed{E(W) = \frac{1}{5}}.
\]