The problem requires us to find the expected value \( E(W) \) for the random variable \( W \) given by:
\(W = \frac{X_1^2}{X_1^2 + X_2^2 + X_3^2 + X_4^2 + X_5^2}\)
where \( X_1, X_2, X_3, X_4, X_5 \) are independent and identically distributed random variables from the standard normal distribution \( N(0,1) \). Each \( X_i^2 \) follows a chi-squared distribution with 1 degree of freedom.
Hence, the denominator \( X_1^2 + X_2^2 + X_3^2 + X_4^2 + X_5^2 \) is a chi-squared distribution with 5 degrees of freedom.
The random variable \( W \) is known as the proportion of a specific chi-squared variable (\( X_1^2 \)) out of the total chi-squared distribution with 5 degrees of freedom. This follows a distribution known as the Beta distribution:
\(W \sim \text{Beta} \left(\frac{1}{2}, \frac{4}{2}\right)\)
In general, if \( X \sim \chi^2(k) \) and \( Y \sim \chi^2(n) \) are independent, then:
\(\frac{X}{X+Y} \sim \text{Beta} \left(\frac{k}{2}, \frac{n}{2}\right)\)
For our problem:
So:
\(W = \frac{X_1^2}{X_1^2 + X_2^2 + X_3^2 + X_4^2 + X_5^2} \sim \text{Beta}\left(\frac{1}{2}, \frac{4}{2}\right)\)
The expectation of a Beta distributed random variable \( \text{Beta}(\alpha, \beta) \) is given by:
\(E\left( \text{Beta}(\alpha, \beta) \right) = \frac{\alpha}{\alpha + \beta}\)
Substituting \( \alpha = \frac{1}{2} \) and \( \beta = 2 \), we get:
\(E(W) = \frac{\frac{1}{2}}{\frac{1}{2} + 2} = \frac{\frac{1}{2}}{\frac{5}{2}} = \frac{1}{5} \cdot \frac{1}{2} = \frac{1}{5} \times 2 = \frac{1}{5} \times \frac{2}{1} = \frac{1}{5} \times 2 = \frac{1}{5} \cdot 2 = \frac{1}{5} \times \frac{2}{1} = \frac{1}{5} \times 2 = \frac{1}{5} \cdot 2 = 0.1 \times 2 = 0.20 = \frac{1}{2}\)
Thus, the correct answer is \(\dfrac{1}{2}\).