Let $U \sim F_{5,8}$ and $V \sim F_{8,5}$. If $P[U > 3.69] = 0.05$, then the value of $c$ such that $P[V > c] = 0.95$ equals ................ (round off to two decimal places).
Step 1: Relationship between $F$-distributions.
If $U \sim F_{v_1, v_2}$, then $\frac{1}{U} \sim F_{v_2, v_1}$.
Hence, since $V \sim F_{8,5}$ and $U \sim F_{5,8}$,
\[
V = \frac{1}{U} \text{ in distribution sense.}
\]
Step 2: Find critical value correspondence.
\[
P(U > 3.69) = 0.05 \implies P\left(\frac{1}{U} < \frac{1}{3.69}\right) = 0.05.
\]
For $V \sim F_{8,5}$,
\[
P(V < 1/3.69) = 0.05 $\Rightarrow$ P(V > 1/3.69) = 0.95.
\]
Step 3: Compute numerical value.
\[
c = \frac{1}{3.69} = 0.271.
\]
Step 4: Round off.
\[
\boxed{c = 0.27.}
\]