Step 1: Recall properties of Poisson distribution.
For $X_i \sim \text{Poisson}(\lambda)$, \[ E(X_i) = \lambda, \mathrm{Var}(X_i) = \lambda. \]
Step 2: Compute $E(\bar{X})$ and $\mathrm{Var}(\bar{X})$.
\[ E(\bar{X}) = \lambda, \mathrm{Var}(\bar{X}) = \frac{\lambda}{n}. \]
Step 3: Compute $E(S^2)$.
For Poisson, $S^2$ is an unbiased estimator of $\lambda$: \[ E(S^2) = \lambda. \] Hence, (D) is true.
Step 4: Cramer–Rao lower bound.
For a Poisson distribution, \[ \text{CRLB} = \frac{\lambda}{n}. \] Since $\mathrm{Var}(\bar{X}) = \frac{\lambda}{n}$, the sample mean $\bar{X}$ attains the CRLB. Hence, (C) is true.
Step 5: Conclusion.
\[ \boxed{(C) \text{ and } (D) \text{ are correct.}} \]
Let \( X_1, X_2, \dots, X_7 \) be a random sample from a population having the probability density function \[ f(x) = \frac{1}{2} \lambda^3 x^2 e^{-\lambda x}, \quad x>0, \] where \( \lambda>0 \) is an unknown parameter. Let \( \hat{\lambda} \) be the maximum likelihood estimator of \( \lambda \), and \( E(\hat{\lambda} - \lambda) = \alpha \lambda \) be the corresponding bias, where \( \alpha \) is a real constant. Then the value of \( \frac{1}{\alpha} \) equals __________ (answer in integer).