Let $X_1, X_2, \ldots, X_n$ be i.i.d. Poisson($\lambda$) random variables, where $\lambda > 0$. Define \[ \bar{X} = \frac{1}{n}\sum_{i=1}^n X_i \,\, \text{and} \,\, S^2 = \frac{1}{n - 1}\sum_{i=1}^n (X_i - \bar{X})^2. \] Then which of the following statements is/are TRUE?
Step 1: Find $E(\bar{X})$ and $\text{Var}(\bar{X})$
$$E(\bar{X}) = E\left(\frac{1}{n}\sum_{i=1}^n X_i\right) = \frac{1}{n} \cdot n\lambda = \lambda$$
$$\text{Var}(\bar{X}) = \text{Var}\left(\frac{1}{n}\sum_{i=1}^n X_i\right) = \frac{1}{n^2} \cdot n\lambda = \frac{\lambda}{n}$$
Step 2: Find $E(S^2)$
For any distribution, $S^2$ is an unbiased estimator of the population variance: $$E(S^2) = \text{Var}(X_i) = \lambda$$
Step 3: Find $\text{Var}(S^2)$
For i.i.d. samples: $$\text{Var}(S^2) = \frac{1}{n}\left[\mu_4 - \frac{n-3}{n-1}\sigma^4\right]$$
where $\mu_4 = E[(X_i - \lambda)^4]$ and $\sigma^2 = \lambda$.
For Poisson($\lambda$):
$$\text{Var}(S^2) = \frac{1}{n}\left[\lambda + 3\lambda^2 - \frac{n-3}{n-1}\lambda^2\right] = \frac{1}{n}\left[\lambda + \frac{2\lambda^2}{n-1}\right]$$
Step 4: Evaluate each option
(A) $\text{Var}(\bar{X}) < \text{Var}(S^2)$
$$\text{Var}(\bar{X}) = \frac{\lambda}{n}$$
$$\text{Var}(S^2) = \frac{1}{n}\left[\lambda + \frac{2\lambda^2}{n-1}\right]$$
For large $n$ or $\lambda > 0$: $$\text{Var}(S^2) > \frac{\lambda}{n} = \text{Var}(\bar{X})$$
TRUE
(B) $\text{Var}(\bar{X}) = \text{Var}(S^2)$
From above, these are not equal. FALSE
(C) $\text{Var}(\bar{X})$ attains the Cramér-Rao lower bound
For Poisson($\lambda$), the Fisher information is $I(\lambda) = \frac{1}{\lambda}$.
Cramér-Rao lower bound for estimating $\lambda$: $$\text{CRLB} = \frac{1}{nI(\lambda)} = \frac{\lambda}{n}$$
Since $\text{Var}(\bar{X}) = \frac{\lambda}{n}$, it attains the CRLB.
TRUE
(D) $E(\bar{X}) = E(S^2)$
$$E(\bar{X}) = \lambda$$ $$E(S^2) = \lambda$$
TRUE
Answer: (A), (C), and (D) are true
Let \( X_1, X_2, \dots, X_7 \) be a random sample from a population having the probability density function \[ f(x) = \frac{1}{2} \lambda^3 x^2 e^{-\lambda x}, \quad x>0, \] where \( \lambda>0 \) is an unknown parameter. Let \( \hat{\lambda} \) be the maximum likelihood estimator of \( \lambda \), and \( E(\hat{\lambda} - \lambda) = \alpha \lambda \) be the corresponding bias, where \( \alpha \) is a real constant. Then the value of \( \frac{1}{\alpha} \) equals __________ (answer in integer).