Step 1: Recall definition of t-distribution.
If $Z \sim N(0,1)$ and $U \sim \chi^2_n$ independently,
then $\dfrac{Z}{\sqrt{U/n}} \sim t_n$.
Step 2: Apply to given expression.
Here, $X_1 \sim N(0,1)$ and $(X_2^2 + X_3^2) \sim \chi^2_2$.
Thus,
\[
\frac{\sqrt{2} X_1}{\sqrt{X_2^2 + X_3^2}} = \frac{X_1}{\sqrt{(X_2^2 + X_3^2)/2}}.
\]
This matches the definition of $t_2$.
Step 3: Check other options.
(B) Denominator $|X_2 + X_3|$ does not follow $\chi^2_1$, so not $t_1$.
(C) Ratio of quadratic terms does not simplify to $F_{1,1}$.
(D) $\sum X_i^2 \sim \chi^2_3$, not $\chi^2_2$.
Step 4: Conclusion.
\[
\boxed{\frac{\sqrt{2} X_1}{\sqrt{X_2^2 + X_3^2}} \sim t_2.}
\]