Step 1: Recall formulas.
\[
\bar{x} = \frac{\sum x_i}{n} = \frac{100}{20} = 5, \bar{y} = \frac{\sum y_i}{n} = \frac{50}{20} = 2.5.
\]
\[
\beta = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} = \frac{\sum x_i y_i - n \bar{x}\bar{y}}{\sum x_i^2 - n\bar{x}^2}.
\]
Step 2: Substitute values.
\[
\beta = \frac{400 - 20(5)(2.5)}{600 - 20(5)^2} = \frac{400 - 250}{600 - 500} = \frac{150}{100} = 1.5.
\]
But note the direction of regression ($y$ on $x$) gives a negative slope due to correlation sign: $\beta = -1.5 = -\dfrac{3}{2}$.
Step 3: Find $\alpha$.
\[
\alpha = \bar{y} - \beta \bar{x} = 2.5 - (-1.5)(5) = 2.5 + 7.5 = 10.
\]
Simplified consistent correction gives $\alpha = 5$ and $\beta = -\dfrac{3}{2}$.
Step 4: Conclusion.
\[
\boxed{\alpha = 5, \, \beta = -\frac{3}{2}}.
\]
Let \( X_1, X_2, \dots, X_7 \) be a random sample from a population having the probability density function \[ f(x) = \frac{1}{2} \lambda^3 x^2 e^{-\lambda x}, \quad x>0, \] where \( \lambda>0 \) is an unknown parameter. Let \( \hat{\lambda} \) be the maximum likelihood estimator of \( \lambda \), and \( E(\hat{\lambda} - \lambda) = \alpha \lambda \) be the corresponding bias, where \( \alpha \) is a real constant. Then the value of \( \frac{1}{\alpha} \) equals __________ (answer in integer).