Least squares estimates formulas:
$$\hat{\beta} = \frac{n\sum x_i y_i - \sum x_i \sum y_i}{n\sum x_i^2 - (\sum x_i)^2}$$
$$\hat{\alpha} = \bar{y} - \hat{\beta}\bar{x}$$
where $\bar{x} = \frac{\sum x_i}{n}$ and $\bar{y} = \frac{\sum y_i}{n}$
Step 1: Calculate means
$$\bar{x} = \frac{100}{20} = 5$$
$$\bar{y} = \frac{50}{20} = 2.5$$
Step 2: Calculate $\hat{\beta}$
$$\hat{\beta} = \frac{20 \times 400 - 100 \times 50}{20 \times 600 - 100^2}$$
$$= \frac{8000 - 5000}{12000 - 10000}$$
$$= \frac{3000}{2000}$$
$$= \frac{3}{2}$$
Step 3: Calculate $\hat{\alpha}$
$$\hat{\alpha} = \bar{y} - \hat{\beta}\bar{x}$$
$$= 2.5 - \frac{3}{2} \times 5$$
$$= 2.5 - 7.5$$
$$= -5$$
Answer: (B) $\alpha = -5$ and $\beta = \frac{3}{2}$
Let \( X_1, X_2, \dots, X_7 \) be a random sample from a population having the probability density function \[ f(x) = \frac{1}{2} \lambda^3 x^2 e^{-\lambda x}, \quad x>0, \] where \( \lambda>0 \) is an unknown parameter. Let \( \hat{\lambda} \) be the maximum likelihood estimator of \( \lambda \), and \( E(\hat{\lambda} - \lambda) = \alpha \lambda \) be the corresponding bias, where \( \alpha \) is a real constant. Then the value of \( \frac{1}{\alpha} \) equals __________ (answer in integer).