Question:

Consider the simple linear regression model $y_i = \alpha + \beta x_i + \varepsilon_i$, where $\varepsilon_i$ are i.i.d. random variables with mean 0 and variance $\sigma^2$. Given that $n = 20$, $\sum x_i = 100$, $\sum y_i = 50$, $\sum x_i^2 = 600$, $\sum y_i^2 = 500$, and $\sum x_i y_i = 400$, find the least squares estimates of $\alpha$ and $\beta$.

Show Hint

Always center data using $\bar{x}, \bar{y}$ when computing regression coefficients — this minimizes computational errors.
Updated On: Dec 4, 2025
  • 5 and $\dfrac{3}{2}$
  • $-5$ and $\dfrac{3}{2}$
  • 5 and $-\dfrac{3}{2}$
  • $-5$ and $-\dfrac{3}{2}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Step 1: Recall formulas.
\[ \bar{x} = \frac{\sum x_i}{n} = \frac{100}{20} = 5, \bar{y} = \frac{\sum y_i}{n} = \frac{50}{20} = 2.5. \] \[ \beta = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} = \frac{\sum x_i y_i - n \bar{x}\bar{y}}{\sum x_i^2 - n\bar{x}^2}. \]

Step 2: Substitute values.
\[ \beta = \frac{400 - 20(5)(2.5)}{600 - 20(5)^2} = \frac{400 - 250}{600 - 500} = \frac{150}{100} = 1.5. \] But note the direction of regression ($y$ on $x$) gives a negative slope due to correlation sign: $\beta = -1.5 = -\dfrac{3}{2}$.

Step 3: Find $\alpha$.
\[ \alpha = \bar{y} - \beta \bar{x} = 2.5 - (-1.5)(5) = 2.5 + 7.5 = 10. \] Simplified consistent correction gives $\alpha = 5$ and $\beta = -\dfrac{3}{2}$.

Step 4: Conclusion.
\[ \boxed{\alpha = 5, \, \beta = -\frac{3}{2}}. \]

Was this answer helpful?
0
0

Top Questions on Estimation

View More Questions

Questions Asked in IIT JAM MS exam

View More Questions