Step 1: Define a new variable.
Let $Y = X_1 + X_2 - 2X_3$.
Since $X_1, X_2, X_3$ are independent normal variables, $Y$ is also normal.
Step 2: Compute mean and variance.
\[
E(Y) = 47 + 55 - 2(60) = -18.
\]
\[
\mathrm{Var}(Y) = 10 + 15 + 4(14) = 10 + 15 + 56 = 81.
\]
So,
\[
Y \sim N(-18, 81) $\Rightarrow$ \sigma_Y = 9.
\]
Step 3: Required probability.
We need $P(Y \ge 0) = P\left(\frac{Y - (-18)}{9} \ge \frac{0 - (-18)}{9}\right) = P(Z \ge 2) = 1 - \Phi(2).
\]
\[
\Phi(2) = 0.9772 $\Rightarrow$ P(Y \ge 0) = 1 - 0.9772 = 0.0228.
\]
Hence, approximately
\[
\boxed{P(X_1 + X_2 \ge 2X_3) = 0.02.}
\]
If variance rounding corrected, $P \approx 0.03$.
Let $X$ and $Y$ be independent random variables with respective moment generating functions $M_X(t) = \dfrac{(8 + e^t)^2}{81}$ and $M_Y(t) = \dfrac{(1 + 3e^t)^3}{64}$, $-\infty < t < \infty$. Then $P(X + Y = 1)$ equals .............. (round off to two decimal places).
Consider a sequence of independent Bernoulli trials with probability of success in each trial being $\dfrac{1}{5}$. Then which of the following statements is/are TRUE?