Let $X_1, X_2, \ldots, X_n$ be a random sample from $N(\mu_1, \sigma^2)$ distribution and $Y_1, Y_2, \ldots, Y_m$ be a random sample from $N(\mu_2, \sigma^2)$ distribution, where $\mu_i \in \mathbb{R}, i = 1, 2$ and $\sigma > 0$. Suppose that the two random samples are independent. Define \[ \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \text{and} W = \frac{\sqrt{mn} (\bar{X} - \mu_1)}{\sqrt{\sum_{i=1}^{m} (Y_i - \mu_2)^2}}. \] Then which one of the following statements is TRUE for all positive integers $m$ and $n$?
Step 1: Distribution of $\bar{X$.}
Since $X_i \sim N(\mu_1, \sigma^2)$, we have
\[
\bar{X} \sim N\left(\mu_1, \frac{\sigma^2}{n}\right).
\]
Thus,
\[
Z_1 = \frac{\sqrt{n} (\bar{X} - \mu_1)}{\sigma} \sim N(0, 1).
\]
Step 2: Distribution of the denominator.
Each $(Y_i - \mu_2)/\sigma \sim N(0,1)$. Hence,
\[
\frac{1}{\sigma^2} \sum_{i=1}^{m} (Y_i - \mu_2)^2 \sim \chi^2_m.
\]
Step 3: Combine numerator and denominator.
The numerator $Z_1$ is $N(0,1)$ and independent of the denominator term.
Hence,
\[
W = \frac{Z_1}{\sqrt{(\chi^2_m / m)}} \sim t_m.
\]
Step 4: Square the statistic.
Since $t_m^2 \sim F_{1, m}$,
\[
W^2 \sim F_{1, m}.
\]
Step 5: Conclusion.
\[
\boxed{W^2 \sim F_{1, m}.}
\]