Let $X_1, X_2, \ldots, X_n$ be a random sample from $U(1,2)$ and $Y_1, Y_2, \ldots, Y_n$ be a random sample from $U(0,1)$. Suppose the two samples are independent. Define \[ Z_i = \begin{cases} 1, & \text{if } X_i Y_i < 1, \\ 0, & \text{otherwise}, \end{cases} i = 1,2, \ldots, n. \] If $\lim_{n \to \infty} P\left(|\frac{1}{n} \sum_{i=1}^n Z_i - \theta| < \epsilon\right) = 1$ for all $\epsilon > 0$, then $\theta$ equals