Let \(X_1, X_2, ..., X_n\) be a random sample from an exponential distribution with probability density function
\[
f(x; \theta) =
\begin{cases}
\theta e^{-\theta x}, & x>0,
0, & \text{otherwise,}
\end{cases}
\]
where \(\theta \in (0, \infty)\) is unknown. Let \(\alpha \in (0,1)\) be fixed and let \(\beta\) be the power of the most powerful test of size \(\alpha\) for testing \(H_0: \theta = 1\) against \(H_1: \theta = 2\).
Consider the critical region
\[
R = \left\{ (x_1, x_2, ..., x_n) \in \mathbb{R}^n : \sum_{i=1}^n x_i>\frac{1}{2}\chi^2_{2n}(1-\alpha) \right\},
\]
where for any \(\gamma \in (0,1)\), \(\chi^2_{2n}(\gamma)\) is a fixed point such that \( P(\chi^2_{2n}>\chi^2_{2n}(\gamma)) = \gamma. \)
Then, the critical region \(R\) corresponds to the