Let the random vector \((X, Y)\) have the joint probability mass function
\[
f(x, y) =
\begin{cases}
\binom{10}{x} \binom{5}{y} \left(\frac{1}{4}\right)^{x - y + 5} \left(\frac{3}{4}\right)^{y - x + 10}, & x = 0, 1, \ldots, 10; \; y = 0, 1, \ldots, 5 \\
0, & \text{otherwise}
\end{cases}
\]
Let \( Z = Y - X + 10 \).
If \( \alpha = E(Z) \) and \( \beta = \text{Var}(Z) \), then \( 8\alpha + 48\beta \) is equal to ..............