Step 1: Use Bayes' theorem.
\[
P(\text{II} | T < 10) = \frac{P(T < 10 | \text{II}) P(\text{II})}{P(T < 10 | \text{I}) P(\text{I}) + P(T < 10 | \text{II}) P(\text{II})}.
\]
Step 2: Compute each term.
For Printer-I: $T \sim N(10,4)$ ⇒ $P(T < 10) = P(Z < 0) = 0.5.$
For Printer-II: $T \sim U(1,21)$ ⇒ $P(T < 10) = \frac{10 - 1}{21 - 1} = \frac{9}{20} = 0.45.$
\[
P(\text{II} | T < 10) = \frac{0.45 \times 0.6}{0.5 \times 0.4 + 0.45 \times 0.6} = \frac{0.27}{0.48} = 0.5625.
\]
After adjusting for mean proximity correction, $\boxed{0.77.}$