>
questions
List of practice Questions
If $y(\theta) = \frac{2\cos\theta + \cos2\theta}{\cos3\theta + 4\cos2\theta + 5\cos\theta + 2}$, then at $\theta = \frac{\pi}{2}, y'' + y' + y$ is equal to:
JEE Main - 2024
JEE Main
Mathematics
Differential Calculus
Let the mean and the standard deviation of the probability distribution be
be $\mu$ and $\sigma$, respectively. If $\sigma - \mu = 2$, then $\sigma + \mu$ is equal to ________.
JEE Main - 2024
JEE Main
Mathematics
Random Variables and its Probability Distributions
Let \( y = y(x) \) be the solution of the differential equation\[\frac{dy}{dx} + \frac{2x}{\left( 1 + x^2 \right)^2} y = x e^{\frac{1}{1+x^2}}, \quad y(0) = 0. \] Then the area enclosed by the curve \[ f(x) = y(x) e^{\frac{1}{1+x^2}} \]and the line \( y - x = 4 \) is _______.
JEE Main - 2024
JEE Main
Mathematics
Differential Equations
The number of solutions of \[\sin^2 x + (2 + 2x - x^2) \sin x - 3(x - 1)^2 = 0, \quad \text{where } -\pi \leq x \leq \pi,\] is
JEE Main - 2024
JEE Main
Mathematics
Trigonometric Equations
Let ABCD and AEFG be squares of side 4 and 2 units, respectively. The point E is on the line segment AB and the point F is on the diagonal AC. Then the radius r of the circle passing through the point F and touching the line segments BC and CD satisfies :
JEE Main - 2024
JEE Main
Mathematics
Coordinate Geometry
Let $\alpha \beta \neq 0$ and $A = \begin{bmatrix} \beta & \alpha & 3 \\ \alpha & \alpha & \beta \\ -\beta & \alpha & 2\alpha \end{bmatrix}$. If $B = \begin{bmatrix} 3\alpha & -9 & 3\alpha \\ -\alpha & 7 & -2\alpha \\ -2\alpha & 5 & -2\beta \end{bmatrix}$ is the matrix of cofactors of the elements of A, then det(AB) is equal to:
JEE Main - 2024
JEE Main
Mathematics
Matrices
Let $\beta(m, n) = \int_{0}^{1}x^{m-1}(1-x)^{n-1}dx$, $m, n > 0$. If $\int_{0}^{1}(1-x^{10})^{20}dx = a\beta(b,c)$, then $100(a+b+x)$ equals
JEE Main - 2024
JEE Main
Mathematics
Integral Calculus
Let the set $S = \{2, 4, 8, 16, ..., 512\}$ be partitioned into 3 sets $A, B, C$ with equal number of elements such that $A \cup B \cup C = S$ and $A \cap B = B \cap C = A \cap C = \phi$. The maximum number of such possible partitions of $S$ is equal to:
JEE Main - 2024
JEE Main
Mathematics
permutations and combinations
The coefficients a, b, c in the quadratic equation ax
2
+ bx + c = 0 are from the set {1, 2, 3, 4, 5, 6}. If the probability of this equation having one real root bigger than the other is p, then 216p equals :
JEE Main - 2024
JEE Main
Mathematics
Probability
The values of $m, n$, for which the system of equations
$x + y + z = 4,$
$2x + 5y + 5z = 17,$
$x + 2y + mz = n$
has infinitely many solutions, satisfy the equation :
JEE Main - 2024
JEE Main
Mathematics
Linear Algebra
Consider three vectors $\vec{a}, \vec{b}, \vec{c}$. Let $|\vec{a}| = 2, |\vec{b}| = 3$ and $\vec{a} = \vec{b} \times \vec{c}$. If $\alpha \in [0, \frac{\pi}{3}]$ is the angle between the vectors $\vec{b}$ and $\vec{c}$, then the minimum value of $27|\vec{c}| - |\vec{a}|^2$ is equal to:
JEE Main - 2024
JEE Main
Mathematics
Vector Algebra
If the constant term in the expansion of $\left(\frac{\sqrt[5]{3}}{x}+\frac{2x}{\sqrt[3]{5}}\right)^{12}$, $x \neq 0$, is $\alpha \times 2^8 \times \sqrt[5]{3}$, then $25\alpha$ is
JEE Main - 2024
JEE Main
Mathematics
Binomial theorem
Let $(\alpha, \beta, \gamma)$ be the point $(8, 5, 7)$ in the line $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-2}{5}$. Then $\alpha + \beta + \gamma$ is equal to
JEE Main - 2024
JEE Main
Mathematics
3D Geometry
Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be defined as: $f(x) = |x - 1|$ and $g(x) = \begin{cases} e^x, & x \geq 0 \\ x + 1, & x \leq 0 \end{cases}$ Then the function $f(g(x))$ is
JEE Main - 2024
JEE Main
Mathematics
Functions
Let the circle $C_{1}: x^{2}+y^{2}-2(x+y)+1=0$ and $C_{2}$ be a circle having centre at $(-1, 0)$ and radius 2. If the line of the common chord of
$C_{1}$ and $C_{2}$ intersects the y-axis at the point P, then the square of the distance of P from the centre of $C_{1}$ is:
JEE Main - 2024
JEE Main
Mathematics
Circles
60 words can be made using all the letters of the word BHBJO, with or without meaning. If these words are written as in a dictionary, then the 50
th
word is :
JEE Main - 2024
JEE Main
Mathematics
permutations and combinations
Let
\(\vec{a}\)
= 2$\hat{i}$ + 5$\hat{j}$ - $\hat{k}$, $\vec{b}$ = 2$\hat{i}$ - 2$\hat{j}$ + 2$\hat{k}$
and $\vec{c}$ be three vectors such that
($\vec{c}$ + $\hat{i}$) $\times$ ($\vec{a}$ + $\vec{b}$ + $\hat{i}$) = $\vec{a}$ $\times$ ($\vec{c}$ + $\hat{i})$ . $\vec{a}$.$\vec{c}$ = -29,)
then $\vec{c}$.(-2$\hat{i}$ + $\hat{j}$ + $\hat{k}$) is equal to :
JEE Main - 2024
JEE Main
Mathematics
Vector Algebra
Let $S_1 = \{z \in \mathbb{C} : |z| \leq 5\}$,
$S_2 = \left\{z \in \mathbb{C} : \text{Im}\left(\frac{z + 1 - \sqrt{3}i}{1 - \sqrt{3}i}\right) \geq 0\right\}$ and
$S_3 = \{z \in \mathbb{C} : \text{Re}(z) \geq 0\}$. Then
JEE Main - 2024
JEE Main
Mathematics
Complex numbers
The area enclosed between the curves $y = x|x|$ and $y = x - |x|$ is:
JEE Main - 2024
JEE Main
Mathematics
Area under Simple Curves
The differential equation of the family of circles passing the origin and having center at the line y = x is:
JEE Main - 2024
JEE Main
Mathematics
Differential Equations
A solid sphere and a hollow cylinder roll up without slipping on the same inclined plane with the same initial speed \( v \). The sphere and the cylinder reach up to maximum heights \( h_1 \) and \( h_2 \), respectively, above the initial level. The ratio \( h_1 : h_2 \) is \( \frac{n}{10} \). The value of \( n \) is ______.
JEE Main - 2024
JEE Main
Physics
Rotational motion
Two forces \( \vec{F}_1 \) and \( \vec{F}_2 \) are acting on a body. One force has magnitude thrice that of the other force, and the resultant of the two forces is equal to the force of larger magnitude. The angle between \( \vec{F}_1 \) and \( \vec{F}_2 \) is \( \cos^{-1}\left(\frac{1}{n}\right) \). The value of \( |n| \) is _____.
JEE Main - 2024
JEE Main
Physics
Forces
An elastic spring under tension of 3 N has a length a. Its length is b under tension 2 N. For its length (3a – 2b), the value of tension will be_____ N.
JEE Main - 2024
JEE Main
Physics
thermal properties of matter
Two wavelengths \( \lambda_1 \) and \( \lambda_2 \) are used in Young's double slit experiment. \( \lambda_1 = 450 \, \text{nm} \) and \( \lambda_2 = 650 \, \text{nm} \). The minimum order of fringe produced by \( \lambda_2 \), which overlaps with the fringe produced by \( \lambda_1 \), is \( n \). The value of \( n \) is _____.
JEE Main - 2024
JEE Main
Physics
Wave optics
Twelve wires, each having resistance \( 2 \, \Omega \), are joined to form a cube. A battery of \( 6 \, \text{V} \) emf is joined across points \( a \) and \( c \). The voltage difference between \( e \) and \( f \) is ______ \( \text{V} \).
JEE Main - 2024
JEE Main
Physics
Current electricity
Prev
1
...
2165
2166
2167
2168
2169
...
5998
Next