To find \( f(g(x)) \), we first evaluate \( g(x) \) based on the value of \( x \).
\[ g(x) = \begin{cases} e^x, & x \geq 0 \\ x + 1, & x \leq 0 \end{cases} \]
The function \( f \) is defined as \( f(x) = |x - 1| \). Therefore, we have: \[ f(g(x)) = |g(x) - 1|. \]
Case 1: When \( x \geq 0 \)
\[ f(g(x)) = |e^x - 1|. \]
Case 2: When \( x \leq 0 \)
\[ f(g(x)) = |x + 1 - 1| = |x| = -x \quad \text{(since \( x \leq 0 \))}. \]
Analysis of \( f(g(x)) \) - For \( x \geq 0 \), \( f(g(x)) = |e^x - 1| \) is neither one-one nor onto because it cannot cover all values in the codomain (as it is non-negative). For \( x \leq 0 \), \( f(g(x)) = -x \) is also neither one-one nor onto due to its behavior as a non-injective transformation on the interval.
Therefore, the function \( f(g(x)) \) is neither one-one nor onto.
If the domain of the function \( f(x) = \dfrac{1}{\sqrt{10 + 3x - x^2}} + \dfrac{1}{\sqrt{x + |x|}} \) is \( (a, b) \), then \((1 + a)^2 + b^2\) is equal to:
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
Two capacitors \( C_1 \) and \( C_2 \) are connected in parallel to a battery. Charge-time graph is shown below for the two capacitors. The energy stored with them are \( U_1 \) and \( U_2 \), respectively. Which of the given statements is true? 
In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of \( P_1 \) and \( P_2 \) are orthogonal to each other. The polarizer \( P_3 \) covers both the slits with its transmission axis at \( 45^\circ \) to those of \( P_1 \) and \( P_2 \). An unpolarized light of wavelength \( \lambda \) and intensity \( I_0 \) is incident on \( P_1 \) and \( P_2 \). The intensity at a point after \( P_3 \), where the path difference between the light waves from \( S_1 \) and \( S_2 \) is \( \frac{\lambda}{3} \), is:
