Given that \( B \) is the matrix of cofactors of \( A \), we use the relationship:
\[ AB = \det(A) \cdot I_3, \] where \( I_3 \) is the \( 3 \times 3 \) identity matrix. Therefore: \[ \det(AB) = \det(A)^3. \]
We know: \[ (2\alpha^2 - 3\alpha) = \alpha. \]
Rearranging: \[ 2\alpha^2 - 3\alpha - \alpha = 0 \implies 2\alpha^2 - 4\alpha = 0. \]
Since \( \alpha \neq 0 \), we get: \[ \alpha = 2. \]
Using the relation: \[ 2\alpha^2 - \alpha\beta = 3\alpha, \] substitute \( \alpha = 2 \): \[ 2 \cdot 2^2 - 2\beta = 3 \cdot 2 \implies 8 - 2\beta = 6 \implies 2\beta = 2 \implies \beta = 1. \]
Substitute \( \alpha = 2 \) and \( \beta = 1 \) into matrix \( A \): \[ A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 2 & 1 \\ -1 & 2 & 4 \end{bmatrix}. \]
The determinant of \( A \) is: \[ \det(A) = 1 \cdot \begin{vmatrix} 2 & 1 \\ 2 & 4 \end{vmatrix} - 2 \cdot \begin{vmatrix} 2 & 1 \\ -1 & 4 \end{vmatrix} + 3 \cdot \begin{vmatrix} 2 & 2 \\ -1 & 2 \end{vmatrix}. \]
Calculating each minor: \[ \begin{vmatrix} 2 & 1 \\ 2 & 4 \end{vmatrix} = 2 \cdot 4 - 1 \cdot 2 = 6, \] \[ \begin{vmatrix} 2 & 1 \\ -1 & 4 \end{vmatrix} = 2 \cdot 4 - 1 \cdot (-1) = 9, \] \[ \begin{vmatrix} 2 & 2 \\ -1 & 2 \end{vmatrix} = 2 \cdot 2 - 2 \cdot (-1) = 6. \]
Thus: \[ \det(A) = 1 \cdot 6 - 2 \cdot 9 + 3 \cdot 6 = 6 - 18 + 18 = 6. \]
Since: \[ \det(AB) = \det(A)^3 = 6^3 = 216. \]
Therefore, the correct answer is Option (4).
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
Let $ A $ be a $ 3 \times 3 $ matrix such that $ | \text{adj} (\text{adj} A) | = 81. 
$ If $ S = \left\{ n \in \mathbb{Z}: \left| \text{adj} (\text{adj} A) \right|^{\frac{(n - 1)^2}{2}} = |A|^{(3n^2 - 5n - 4)} \right\}, $ then the value of $ \sum_{n \in S} |A| (n^2 + n) $ is:
Let \( A = \begin{bmatrix} \alpha & -1 \\ 6 & \beta \end{bmatrix} , \ \alpha > 0 \), such that \( \det(A) = 0 \) and \( \alpha + \beta = 1. \) If \( I \) denotes the \( 2 \times 2 \) identity matrix, then the matrix \( (I + A)^8 \) is:
Given below are two statements:
Statement (I):
 
 are isomeric compounds. 
Statement (II): 
 are functional group isomers.
In the light of the above statements, choose the correct answer from the options given below:
The effect of temperature on the spontaneity of reactions are represented as: Which of the following is correct?
