The set \( S = \{ 2, 2^2, 2^3, \ldots, 2^9 \} \) contains 9 elements. To partition \( S \) into 3 subsets \( A, B, C \) of equal size, each subset must have exactly 3 elements.
The number of ways to partition the set can be calculated using the formula:
\[ \text{Number of partitions} = \frac{9!}{(3!3!3!)} \times 3!. \]
Expanding this expression:
\[ \text{Number of partitions} = \frac{9 \times 8 \times 7 \times 6 \times 5 \times 4}{6 \times 6} \times 6 = 1680. \]
Therefore, the maximum number of such possible partitions of \( S \) is 1680.
If all the words with or without meaning made using all the letters of the word "KANPUR" are arranged as in a dictionary, then the word at 440th position in this arrangement is:
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of \( P_1 \) and \( P_2 \) are orthogonal to each other. The polarizer \( P_3 \) covers both the slits with its transmission axis at \( 45^\circ \) to those of \( P_1 \) and \( P_2 \). An unpolarized light of wavelength \( \lambda \) and intensity \( I_0 \) is incident on \( P_1 \) and \( P_2 \). The intensity at a point after \( P_3 \), where the path difference between the light waves from \( S_1 \) and \( S_2 \) is \( \frac{\lambda}{3} \), is:
