Given:
\[ 3 = K(a - \ell) \] \[ 2 = K(b - \ell) \]
where \( K \) is the spring constant and \( \ell \) is the natural length of the spring.
To find the tension \( T \) for the length \( (3a - 2b) \), we use:
\[ T = K (3a - 2b - \ell) \]
Substituting the values of \( a - \ell \) and \( b - \ell \) from the given equations:
\[ T = K [3(a - \ell) - 2(b - \ell)] \]
\[ T = K \left[ 3 \left( \frac{3}{K} \right) - 2 \left( \frac{2}{K} \right) \right] \]
\[ T = K \left[ \frac{9}{K} - \frac{4}{K} \right] \]
\[ T = K \left[ \frac{5}{K} \right] = 5 \, \text{N} \]
Conclusion:
Hence, the value of the tension is \( 5 \, \text{N} \).
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $
20 mL of sodium iodide solution gave 4.74 g silver iodide when treated with excess of silver nitrate solution. The molarity of the sodium iodide solution is _____ M. (Nearest Integer value) (Given : Na = 23, I = 127, Ag = 108, N = 14, O = 16 g mol$^{-1}$)