Given:
\[ 3 = K(a - \ell) \] \[ 2 = K(b - \ell) \]
where \( K \) is the spring constant and \( \ell \) is the natural length of the spring.
To find the tension \( T \) for the length \( (3a - 2b) \), we use:
\[ T = K (3a - 2b - \ell) \]
Substituting the values of \( a - \ell \) and \( b - \ell \) from the given equations:
\[ T = K [3(a - \ell) - 2(b - \ell)] \]
\[ T = K \left[ 3 \left( \frac{3}{K} \right) - 2 \left( \frac{2}{K} \right) \right] \]
\[ T = K \left[ \frac{9}{K} - \frac{4}{K} \right] \]
\[ T = K \left[ \frac{5}{K} \right] = 5 \, \text{N} \]
Conclusion:
Hence, the value of the tension is \( 5 \, \text{N} \).
Let \( y^2 = 12x \) be the parabola and \( S \) its focus. Let \( PQ \) be a focal chord of the parabola such that \( (SP)(SQ) = \frac{147}{4} \). Let \( C \) be the circle described by taking \( PQ \) as a diameter. If the equation of the circle \( C \) is: \[ 64x^2 + 64y^2 - \alpha x - 64\sqrt{3}y = \beta, \] then \( \beta - \alpha \) is equal to:
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
Let $ A \in \mathbb{R} $ be a matrix of order 3x3 such that $$ \det(A) = -4 \quad \text{and} \quad A + I = \left[ \begin{array}{ccc} 1 & 1 & 1 \\2 & 0 & 1 \\4 & 1 & 2 \end{array} \right] $$ where $ I $ is the identity matrix of order 3. If $ \det( (A + I) \cdot \text{adj}(A + I)) $ is $ 2^m $, then $ m $ is equal to: