Given:
\[ 3 = K(a - \ell) \] \[ 2 = K(b - \ell) \]
where \( K \) is the spring constant and \( \ell \) is the natural length of the spring.
To find the tension \( T \) for the length \( (3a - 2b) \), we use:
\[ T = K (3a - 2b - \ell) \]
Substituting the values of \( a - \ell \) and \( b - \ell \) from the given equations:
\[ T = K [3(a - \ell) - 2(b - \ell)] \]
\[ T = K \left[ 3 \left( \frac{3}{K} \right) - 2 \left( \frac{2}{K} \right) \right] \]
\[ T = K \left[ \frac{9}{K} - \frac{4}{K} \right] \]
\[ T = K \left[ \frac{5}{K} \right] = 5 \, \text{N} \]
Conclusion:
Hence, the value of the tension is \( 5 \, \text{N} \).
List-I (Molecule / Species) | List-II (Property / Shape) |
---|---|
(A) \(SO_2Cl_2\) | (I) Paramagnetic |
(B) NO | (II) Diamagnetic |
(C) \(NO^{-}_{2}\) | (III) Tetrahedral |
(D) \(I^{-}_{3}\) | (IV) Linear |