be $\mu$ and $\sigma$, respectively. If $\sigma - \mu = 2$, then $\sigma + \mu$ is equal to ________.Given that the total probability sums to 1:
\[ \frac{1}{3} + K + \frac{1}{6} + \frac{1}{4} = 1. \]
Simplifying:
\[ K = \frac{1}{4}. \]
Step 1: Calculate the Mean \(\mu\) The mean \(\mu\) is given by:
\[ \mu = \alpha \cdot \frac{1}{3} + 1 \cdot K + 0 \cdot \frac{1}{6} + (-3) \cdot \frac{1}{4}. \]
Substituting the values:
\[ \mu = \frac{\alpha}{3} + \frac{1}{4} \cdot 1 + 0 - \frac{3}{4} = \frac{\alpha}{3} - \frac{1}{2}. \]
Step 2: Calculate the Variance \(\sigma^2\) The variance \(\sigma^2\) is given by:
\[ \sigma^2 = \left(\alpha^2 \cdot \frac{1}{3} + 1^2 \cdot K + 0^2 \cdot \frac{1}{6} + (-3)^2 \cdot \frac{1}{4} \right) - \mu^2. \]
Substituting the values:
\[ \sigma^2 = \frac{\alpha^2}{3} + \frac{1}{4} + \frac{9}{4} - \left(\frac{\alpha}{3} - \frac{1}{2}\right)^2. \]
Simplifying:
\[ \sigma^2 = \frac{\alpha^2}{3} + \frac{1}{4} + \frac{9}{4} - \left(\frac{\alpha^2}{9} - \alpha + \frac{1}{4}\right). \]
Further simplification gives:
\[ \sigma^2 = \frac{2\alpha^2}{9} + \alpha + \frac{9}{4}. \]
Step 3: Given Condition \(\sigma - \mu = 2\) Given:
\[ \sigma = \mu + 2. \]
Substituting this condition and solving for \(\alpha\):
\[ \sigma^2 = (\mu + 2)^2. \]
Equating and simplifying:
\[ \alpha = 6 \quad \text{(since \(\alpha = 0\) is rejected)}. \]
Step 4: Calculate \(\sigma + \mu\) Substitute \(\alpha = 6\) into the expressions for \(\mu\) and \(\sigma\):
\[ \sigma + \mu = 2\mu + 2 = 5. \]
Therefore, the correct answer is $5$.
| \(X\) | 0 | 1 | 2 |
| \(P(X)\) | \(\frac{25}{36}\) | k | \(\frac{1}{36}\) |
Let \( y^2 = 12x \) be the parabola and \( S \) its focus. Let \( PQ \) be a focal chord of the parabola such that \( (SP)(SQ) = \frac{147}{4} \). Let \( C \) be the circle described by taking \( PQ \) as a diameter. If the equation of the circle \( C \) is: \[ 64x^2 + 64y^2 - \alpha x - 64\sqrt{3}y = \beta, \] then \( \beta - \alpha \) is equal to:
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
Let $ A \in \mathbb{R} $ be a matrix of order 3x3 such that $$ \det(A) = -4 \quad \text{and} \quad A + I = \left[ \begin{array}{ccc} 1 & 1 & 1 \\2 & 0 & 1 \\4 & 1 & 2 \end{array} \right] $$ where $ I $ is the identity matrix of order 3. If $ \det( (A + I) \cdot \text{adj}(A + I)) $ is $ 2^m $, then $ m $ is equal to: