Given:
\[ y(\theta) = \frac{2 \cos \theta + 2 \cos^2 \theta - 1}{4 \cos^3 \theta + 8 \cos^2 \theta + 5 \cos \theta + 2}. \]
Factoring the numerator and denominator, we get:
\[ y(\theta) = \frac{1}{2} \cdot \frac{1}{1 + \cos \theta}. \]
Step 1: Evaluate \(y(\theta)\) at \(\theta = \frac{\pi}{2}\)
Substitute \(\theta = \frac{\pi}{2}\): \[ y\left(\frac{\pi}{2}\right) = \frac{1}{2} \cdot \frac{1}{1 + \cos\left(\frac{\pi}{2}\right)} = \frac{1}{2} \cdot \frac{1}{1 + 0} = \frac{1}{2}. \]
Step 2: First Derivative \(y'(\theta)\)
Differentiate \(y(\theta)\) using the chain rule: \[ y'(\theta) = \frac{1}{2} \left(-\frac{1}{(1 + \cos \theta)^2}\right) \cdot (-\sin \theta). \] Evaluating at \(\theta = \frac{\pi}{2}\): \[ y'\left(\frac{\pi}{2}\right) = \frac{1}{2} \cdot \frac{1}{(1 + 0)^2} = \frac{1}{2}. \]
Step 3: Second Derivative \(y''(\theta)\)
Differentiate \(y'(\theta)\): \[ y''(\theta) = \frac{1}{2} \left(\frac{\cos \theta (1 + \cos \theta)^2 - \sin \theta \cdot 2(1 + \cos \theta) \cdot (-\sin \theta)}{(1 + \cos \theta)^4}\right). \] Simplifying and evaluating at \(\theta = \frac{\pi}{2}\): \[ y''\left(\frac{\pi}{2}\right) = 1. \]
Step 4: Summing the Values
\[ y''\left(\frac{\pi}{2}\right) + y'\left(\frac{\pi}{2}\right) + y\left(\frac{\pi}{2}\right) = 1 + \frac{1}{2} + \frac{1}{2} = 2. \]
Therefore, the correct answer is Option (4).
The portion of the line \( 4x + 5y = 20 \) in the first quadrant is trisected by the lines \( L_1 \) and \( L_2 \) passing through the origin. The tangent of an angle between the lines \( L_1 \) and \( L_2 \) is: