Given:
\[ y(\theta) = \frac{2 \cos \theta + 2 \cos^2 \theta - 1}{4 \cos^3 \theta + 8 \cos^2 \theta + 5 \cos \theta + 2}. \]
Factoring the numerator and denominator, we get:
\[ y(\theta) = \frac{1}{2} \cdot \frac{1}{1 + \cos \theta}. \]
Step 1: Evaluate \(y(\theta)\) at \(\theta = \frac{\pi}{2}\)
Substitute \(\theta = \frac{\pi}{2}\): \[ y\left(\frac{\pi}{2}\right) = \frac{1}{2} \cdot \frac{1}{1 + \cos\left(\frac{\pi}{2}\right)} = \frac{1}{2} \cdot \frac{1}{1 + 0} = \frac{1}{2}. \]
Step 2: First Derivative \(y'(\theta)\)
Differentiate \(y(\theta)\) using the chain rule: \[ y'(\theta) = \frac{1}{2} \left(-\frac{1}{(1 + \cos \theta)^2}\right) \cdot (-\sin \theta). \] Evaluating at \(\theta = \frac{\pi}{2}\): \[ y'\left(\frac{\pi}{2}\right) = \frac{1}{2} \cdot \frac{1}{(1 + 0)^2} = \frac{1}{2}. \]
Step 3: Second Derivative \(y''(\theta)\)
Differentiate \(y'(\theta)\): \[ y''(\theta) = \frac{1}{2} \left(\frac{\cos \theta (1 + \cos \theta)^2 - \sin \theta \cdot 2(1 + \cos \theta) \cdot (-\sin \theta)}{(1 + \cos \theta)^4}\right). \] Simplifying and evaluating at \(\theta = \frac{\pi}{2}\): \[ y''\left(\frac{\pi}{2}\right) = 1. \]
Step 4: Summing the Values
\[ y''\left(\frac{\pi}{2}\right) + y'\left(\frac{\pi}{2}\right) + y\left(\frac{\pi}{2}\right) = 1 + \frac{1}{2} + \frac{1}{2} = 2. \]
Therefore, the correct answer is Option (4).
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is:
A cylindrical tank of radius 10 cm is being filled with sugar at the rate of 100π cm3/s. The rate at which the height of the sugar inside the tank is increasing is:
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: