Let us analyze the given conditions step by step.
Step 1: Represent the vector $\vec{v}$
Define:
$\vec{v} = \vec{a} + \vec{b} + \hat{i}$.
Substitute the given values of $\vec{a}$ and $\vec{b}$:
$\vec{v} = (2\hat{i} + 5\hat{j} - \hat{k}) + (2\hat{i} - 2\hat{j} + 2\hat{k}) + \hat{i}$.
Simplify:
$\vec{v} = (2 + 2 + 1)\hat{i} + (5 - 2)\hat{j} + (-1 + 2)\hat{k} = 5\hat{i} + 3\hat{j} + \hat{k}$.
Step 2: Represent $\vec{c} + \hat{i}$ as $\vec{p}$
Define:
$\vec{p} = \vec{c} + \hat{i}$.
Step 3: Apply the cross-product condition
The condition is:
$\vec{p} \times \vec{v} = \vec{a} \times \vec{p}$.
Rearrange:
$\vec{p} \times \vec{v} - \vec{p} \times \vec{a} = \vec{0}$.
Using the distributive property of the cross product:
$\vec{p} \times (\vec{v} - \vec{a}) = \vec{0}$.
Thus, $\vec{p}$ must be parallel to $\vec{v} - \vec{a}$, which implies:
$\vec{p} = \lambda (\vec{v} - \vec{a})$, where $\lambda$ is a scalar.
Step 4: Substitute $\vec{v} - \vec{a}$
Calculate $\vec{v} - \vec{a}$:
$\vec{v} - \vec{a} = (5\hat{i} + 3\hat{j} + \hat{k}) - (2\hat{i} + 5\hat{j} - \hat{k})$.
Simplify:
$\vec{v} - \vec{a} = (5 - 2)\hat{i} + (3 - 5)\hat{j} + (1 - (-1))\hat{k} = 3\hat{i} - 2\hat{j} + 2\hat{k}$.
Thus:
$\vec{p} = \lambda (3\hat{i} - 2\hat{j} + 2\hat{k})$.
Step 5: Use the dot-product condition
The condition $\vec{a} \cdot \vec{c} = -29$ can be written as:
$\vec{a} \cdot (\vec{p} - \hat{i}) = -29$.
Substitute $\vec{p} = \lambda (3\hat{i} - 2\hat{j} + 2\hat{k})$:
$\vec{a} \cdot (\lambda (3\hat{i} - 2\hat{j} + 2\hat{k}) - \hat{i}) = -29$.
Expand:
$\vec{a} \cdot (\lambda 3\hat{i} - \lambda 2\hat{j} + \lambda 2\hat{k} - \hat{i}) = -29$.
Substitute $\vec{a} = 2\hat{i} + 5\hat{j} - \hat{k}$:
$\vec{a} \cdot (3\lambda \hat{i} - 2\lambda \hat{j} + 2\lambda \hat{k} - \hat{i}) = -29$.
Simplify:
$(2)(3\lambda) + (5)(-2\lambda) + (-1)(2\lambda) - (2)(1) = -29$.
Thus:
$6\lambda - 10\lambda - 2\lambda - 2 = -29$.
Solve for $\lambda$:
$-6\lambda - 2 = -29 \implies -6\lambda = -27 \implies \lambda = \frac{27}{6} = -\frac{1}{2}$.
Step 6: Compute $\vec{c}$
Substitute $\vec{c} = \vec{p} - \hat{i}$:
$\vec{c} = \lambda (3\hat{i} - 2\hat{j} + 2\hat{k}) - \hat{i}$.
Simplify:
$\vec{c} = -\frac{1}{2}(3\hat{i} - 2\hat{j} + 2\hat{k}) - \hat{i}$.
$\vec{c} = -\frac{3}{2}\hat{i} + \hat{j} - \hat{k} - \hat{i}$.
Combine terms:
$\vec{c} = -\frac{5}{2}\hat{i} + \hat{j} - \hat{k}$.
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: