
Analyze the Symmetry of the Cube:
By symmetry, the current through the branches \( e-b \) and \( g-d \) is zero, as these branches are equidistant from points \( a \) and \( c \).
Thus, we can ignore these branches in our analysis.
Determine the Equivalent Resistance of the Cube:
After ignoring the branches \( e-b \) and \( g-d \), the remaining network of resistances can be simplified. The equivalent resistance \( R_{\text{eq}} \) between points \( a \) and \( c \) is:
\[ R_{\text{eq}} = \frac{3}{2} \, \Omega \]
Calculate the Current Through the Battery:
The total current \( I \) supplied by the battery with emf \( 6 \, \text{V} \) is:
\[ I = \frac{V}{R_{\text{eq}}} = \frac{6}{\frac{3}{2}} = 4 \, \text{A} \]
Determine the Current Through Each Branch:
Due to the symmetry of the cube, the current divides equally among the paths. The current \( i_2 \) through each resistor in the branches involving \( e \) and \( f \) is:
\[ i_2 = \frac{4}{8} \times 2 = 1 \, \text{A} \]
Calculate the Voltage Difference Between Points \( e \) and \( f \):
The voltage difference \( \Delta V \) between points \( e \) and \( f \) across a single \( 2 \, \Omega \) resistor is:
\[ \Delta V = i_2 \times R = 1 \times 1 = 1 \, \text{V} \]
Conclusion:
The voltage difference between \( e \) and \( f \) is \( 1 \, \text{V} \).
A Wheatstone bridge is initially at room temperature and all arms of the bridge have same value of resistances \[ (R_1=R_2=R_3=R_4). \] When \(R_3\) resistance is heated, its resistance value increases by \(10%\). The potential difference \((V_a-V_b)\) after \(R_3\) is heated is _______ V. 
The heat generated in 1 minute between points A and B in the given circuit, when a battery of 9 V with internal resistance of 1 \(\Omega\) is connected across these points is ______ J. 
The following diagram shows a Zener diode as a voltage regulator. The Zener diode is rated at \(V_z = 5\) V and the desired current in load is 5 mA. The unregulated voltage source can supply up to 25 V. Considering the Zener diode can withstand four times of the load current, the value of resistor \(R_s\) (shown in circuit) should be_______ \(\Omega\).
An object is projected with kinetic energy K from point A at an angle 60° with the horizontal. The ratio of the difference in kinetic energies at points B and C to that at point A (see figure), in the absence of air friction is : 
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to
