Given:
\(|\vec{a}| = 2, \, |\vec{b}| = 3, \, \vec{a} = \vec{b} \times \vec{c}, \, \text{and } \alpha \text{ is the angle between } \vec{b} \text{ and } \vec{c}.\)
From the cross product property:
\[ |\vec{a}| = |\vec{b}||\vec{c}| \sin \alpha, \]
we have:
\[ 2 = 3 \cdot |\vec{c}| \cdot \sin \alpha \implies |\vec{c}| = \frac{2}{3 \sin \alpha}. \]
Next, we calculate \(|\vec{c} - \vec{a}|^2\):
\[ |\vec{c} - \vec{a}|^2 = |\vec{c}|^2 + |\vec{a}|^2 - 2 (\vec{c} \cdot \vec{a}). \]
Using \(|\vec{c}| = \frac{2}{3 \sin \alpha}\) and \(|\vec{a}| = 2\), we find:
\[ |\vec{c}|^2 = \left(\frac{2}{3 \sin \alpha}\right)^2 = \frac{4}{9 \sin^2 \alpha}, \quad |\vec{a}|^2 = 4. \]
For \(\vec{c} \cdot \vec{a}\), since \(\vec{a} \perp \vec{b}\) (as \(\vec{a} = \vec{b} \times \vec{c}\)), we have:
\[ \vec{c} \cdot \vec{a} = 0. \]
Thus:
\[ |\vec{c} - \vec{a}|^2 = \frac{4}{9 \sin^2 \alpha} + 4. \]
The expression to minimize is:
\[ 27|\vec{c} - \vec{a}|^2 = 27 \left(\frac{4}{9 \sin^2 \alpha} + 4 \right). \]
Simplify:
\[ 27|\vec{c} - \vec{a}|^2 = 12 \csc^2 \alpha + 108. \]
To minimize, note that \(\csc^2 \alpha\) is minimized when \(\sin \alpha\) is maximized. The maximum value of \(\sin \alpha\) in the interval \(\alpha \in \left[0, \frac{\pi}{3}\right]\) is \(\sin \alpha = \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}\):
\[ \csc^2 \alpha = \frac{1}{\sin^2 \alpha} = \frac{1}{\left(\frac{\sqrt{3}}{2}\right)^2} = \frac{4}{3}. \]
Substitute:
\[ 27|\vec{c} - \vec{a}|^2 = 12 \cdot \frac{4}{3} + 108 = 16 + 108 = 124. \]
Therefore, the minimum value of \(27|\vec{c} - \vec{a}|^2\) is 124.