Let \( P(8, 5, 7) \), \( \vec{a} = \langle 2, 3, 5 \rangle \), \( F(2\lambda + 1, 3\lambda - 1, 5\lambda + 2) \).
The vector \( \overrightarrow{PF} \) is:
\[ \overrightarrow{PF} = \langle 2\lambda - 7, 3\lambda - 6, 5\lambda - 5 \rangle. \]
Since \( \overrightarrow{PF} \cdot \vec{a} = 0 \), we have:
\[ (2\lambda - 7)(2) + (3\lambda - 6)(3) + (5\lambda - 5)(5) = 0. \]
Simplify:
\[ 4\lambda - 14 + 9\lambda - 18 + 25\lambda - 25 = 0, \] \[ 38\lambda - 57 = 0 \implies \lambda = \frac{3}{2}. \]
The coordinates of \( F \) are:
\[ F = (2\lambda + 1, 3\lambda - 1, 5\lambda + 2) = \left( 4, \frac{7}{2}, \frac{19}{2} \right). \]
The coordinates of \( Q(\alpha, \beta, \gamma) \) are:
\[ \frac{\alpha + 8}{2} = 2\lambda + 1, \quad \frac{\beta + 5}{2} = 3\lambda - 1, \quad \frac{\gamma + 7}{2} = 5\lambda + 2. \]
Solving each equation:
\[ \alpha = 4\lambda - 6, \quad \beta = 6\lambda - 7, \quad \gamma = 10\lambda - 3. \]
Substitute \( \lambda = \frac{3}{2} \):
\[ \alpha = 4\left(\frac{3}{2}\right) - 6 = 6 - 6 = 0, \] \[ \beta = 6\left(\frac{3}{2}\right) - 7 = 9 - 7 = 2, \] \[ \gamma = 10\left(\frac{3}{2}\right) - 3 = 15 - 3 = 12. \]
Finally, compute \( \alpha + \beta + \gamma \):
\[ \alpha + \beta + \gamma = 0 + 2 + 12 = 14. \]
Final Answer: 14
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $