Conservation of Energy:
When the solid sphere and hollow cylinder roll up the incline, their initial kinetic energy (both translational and rotational) is converted into gravitational potential energy at the maximum height.
Total Initial Kinetic Energy for Each Object:
For the solid sphere:
\[ \text{Total KE} = \frac{1}{2}mv^2 + \frac{1}{2}I_{\text{sphere}}\omega^2 \]
where \( I_{\text{sphere}} = \frac{2}{5}mR^2 \) and \( \omega = \frac{v}{R} \).
\[ \text{Total KE}_{\text{sphere}} = \frac{1}{2}mv^2 + \frac{1}{2} \times \frac{2}{5}mR^2 \times \frac{v^2}{R^2} \]
\[ = \frac{1}{2}mv^2 + \frac{1}{5}mv^2 = \frac{7}{10}mv^2 \]
For the hollow cylinder:
\[ \text{Total KE} = \frac{1}{2}mv^2 + \frac{1}{2}I_{\text{cylinder}}\omega^2 \]
where \( I_{\text{cylinder}} = mR^2 \).
\[ \text{Total KE}_{\text{cylinder}} = \frac{1}{2}mv^2 + \frac{1}{2} \times mR^2 \times \frac{v^2}{R^2} \]
\[ = \frac{1}{2}mv^2 + \frac{1}{2}mv^2 = mv^2 \]
Potential Energy at Maximum Height:
At maximum height, all kinetic energy is converted to potential energy:
For the solid sphere:
\[ mgh_1 = \frac{7}{10}mv^2 \] \[ h_1 = \frac{7v^2}{10g} \]
For the hollow cylinder:
\[ mgh_2 = mv^2 \] \[ h_2 = \frac{v^2}{g} \]
Calculate the Ratio \( \frac{h_1}{h_2} \):
\[ \frac{h_1}{h_2} = \frac{\frac{7v^2}{10g}}{\frac{v^2}{g}} = \frac{7}{10} \]
Conclusion:
The ratio \( h_1 : h_2 \) is \( \frac{7}{10} \), so the value of \( n \) is \( 7 \).
A uniform circular disc of radius \( R \) and mass \( M \) is rotating about an axis perpendicular to its plane and passing through its center. A small circular part of radius \( R/2 \) is removed from the original disc as shown in the figure. Find the moment of inertia of the remaining part of the original disc about the axis as given above.
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.
The number of 6-letter words, with or without meaning, that can be formed using the letters of the word MATHS such that any letter that appears in the word must appear at least twice, is $ 4 \_\_\_\_\_$.
Let \( f : (0, \infty) \to \mathbb{R} \) be a twice differentiable function. If for some \( a \neq 0 \), } \[ \int_0^a f(x) \, dx = f(a), \quad f(1) = 1, \quad f(16) = \frac{1}{8}, \quad \text{then } 16 - f^{-1}\left( \frac{1}{16} \right) \text{ is equal to:}\]
Let $L_1: \frac{x-1}{1} = \frac{y-2}{-1} = \frac{z-1}{2}$ and $L_2: \frac{x+1}{-1} = \frac{y-2}{2} = \frac{z}{1}$ be two lines. Let $L_3$ be a line passing through the point $(\alpha, \beta, \gamma)$ and be perpendicular to both $L_1$ and $L_2$. If $L_3$ intersects $L_1$, then $\left| 5\alpha - 11\beta - 8\gamma \right|$ equals: