Conservation of Energy:
When the solid sphere and hollow cylinder roll up the incline, their initial kinetic energy (both translational and rotational) is converted into gravitational potential energy at the maximum height.
Total Initial Kinetic Energy for Each Object:
For the solid sphere:
\[ \text{Total KE} = \frac{1}{2}mv^2 + \frac{1}{2}I_{\text{sphere}}\omega^2 \]
where \( I_{\text{sphere}} = \frac{2}{5}mR^2 \) and \( \omega = \frac{v}{R} \).
\[ \text{Total KE}_{\text{sphere}} = \frac{1}{2}mv^2 + \frac{1}{2} \times \frac{2}{5}mR^2 \times \frac{v^2}{R^2} \]
\[ = \frac{1}{2}mv^2 + \frac{1}{5}mv^2 = \frac{7}{10}mv^2 \]
For the hollow cylinder:
\[ \text{Total KE} = \frac{1}{2}mv^2 + \frac{1}{2}I_{\text{cylinder}}\omega^2 \]
where \( I_{\text{cylinder}} = mR^2 \).
\[ \text{Total KE}_{\text{cylinder}} = \frac{1}{2}mv^2 + \frac{1}{2} \times mR^2 \times \frac{v^2}{R^2} \]
\[ = \frac{1}{2}mv^2 + \frac{1}{2}mv^2 = mv^2 \]
Potential Energy at Maximum Height:
At maximum height, all kinetic energy is converted to potential energy:
For the solid sphere:
\[ mgh_1 = \frac{7}{10}mv^2 \] \[ h_1 = \frac{7v^2}{10g} \]
For the hollow cylinder:
\[ mgh_2 = mv^2 \] \[ h_2 = \frac{v^2}{g} \]
Calculate the Ratio \( \frac{h_1}{h_2} \):
\[ \frac{h_1}{h_2} = \frac{\frac{7v^2}{10g}}{\frac{v^2}{g}} = \frac{7}{10} \]
Conclusion:
The ratio \( h_1 : h_2 \) is \( \frac{7}{10} \), so the value of \( n \) is \( 7 \).
A wheel of radius $ 0.2 \, \text{m} $ rotates freely about its center when a string that is wrapped over its rim is pulled by a force of $ 10 \, \text{N} $. The established torque produces an angular acceleration of $ 2 \, \text{rad/s}^2 $. Moment of inertia of the wheel is............. kg m².

Nature of compounds TeO₂ and TeH₂ is___________ and ______________respectively.