Given:
\[ |\vec{F}_1| = F, \quad |\vec{F}_2| = 3F \]
The resultant force \( |\vec{F}_R| \) is equal to the larger force:
\[ |\vec{F}_R| = 3F \]
The magnitude of the resultant is given by:
\[ |\vec{F}_R|^2 = |\vec{F}_1|^2 + |\vec{F}_2|^2 + 2|\vec{F}_1||\vec{F}_2| \cos \theta \]
Substituting the values:
\[ (3F)^2 = F^2 + (3F)^2 + 2 \times F \times 3F \cos \theta \]
Simplifying:
\[ 9F^2 = F^2 + 9F^2 + 6F^2 \cos \theta \]
Rearranging terms:
\[ 0 = 6F^2 \cos \theta \]
\[ \cos \theta = -\frac{1}{6} \]
Therefore:
\[ \theta = \cos^{-1} \left( -\frac{1}{6} \right) \]
Given that \( \cos \theta = \frac{1}{n} \),
we have:
\[ n = -6 \implies |n| = 6 \]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: