\[ T_{r+1} = \binom{12}{r} \left(\frac{3^{1/5}}{x}\right)^{12-r} \left(\frac{2x}{5^{1/3}}\right)^r \]
\[ T_{r+1} = \binom{12}{r} \frac{3^{12-r}/5}{x^{12-r}} \frac{(2x)^r}{(5)^{r/3}} \]
Given \( r = 6 \), \[ T_7 = \binom{12}{6} \frac{(3^{6/5})(2^6)(x^6)}{x^6 (5^2)} = \binom{12}{6} \frac{3^6 \cdot 2^6}{5^2} \]
Simplifying further, \[ T_7 = \frac{9 \cdot 11 \cdot 7}{25} \cdot 2^8 \cdot 3^{1/5} \]
Finally, equating, \[ 25\alpha = 693 \]
Final Answer: 693
\[ \left( \frac{1}{{}^{15}C_0} + \frac{1}{{}^{15}C_1} \right) \left( \frac{1}{{}^{15}C_1} + \frac{1}{{}^{15}C_2} \right) \cdots \left( \frac{1}{{}^{15}C_{12}} + \frac{1}{{}^{15}C_{13}} \right) = \frac{\alpha^{13}}{{}^{14}C_0 \, {}^{14}C_1 \cdots {}^{14}C_{12}} \]
Then \[ 30\alpha = \underline{\hspace{1cm}} \]
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 