If the circlex2+y2-2gx+6y-19c = 0,g,c∈Rpasses through the point (6, 1) and its centre lies on the line x – 2cy = 8, then the length of intercept made by the circle on x-axis is
Let \(S ={ (\begin{matrix} -1 & 0 \\ a & b \end{matrix}), a,b, ∈(1,2,3,.....100)}\) and let \(T_n = {A ∈ S : A^{n(n + 1)} = I}. \)Then the number of elements in \(\bigcap_{n=1}^{100}\) \(T_n \) is
Let A = {n∈N : H.C.F. (n, 45) = 1} andLet B = {2k :k∈ {1, 2, …,100}}. Then the sum of all the elements of \(A∩B\) is ___________
The number of matrices\(A=\begin{pmatrix} a & b \\ c & d \\ \end{pmatrix}\), where a,b,c,d ∈−1,0,1,2,3,…..,10such that A = A-1, is ______.
If the sum of solutions of the system of equations 2sin2θ – cos2θ = 0 and 2cos2θ + 3sinθ = 0 in the interval [0, 2π] is kπ, then k is equal to _______.
Let the abscissae of the two points P and Q on a circle be the roots of x2 – 4x – 6 = 0 and the ordinates of P and Q be the roots of y2 + 2y – 7 = 0. If PQ is a diameter of the circle x2 + y2 + 2ax + 2by + c = 0, then the value of (a + b – c) is
Let \(S=\left\{θ∈[0,2π]:8^{2sin^2θ}+8^{2cos^2θ}=16\right\}\) .Then\(n(S) + \sum_{\theta \in S}\left( \sec\left(\frac{\pi}{4} + 2\theta\right)\cosec\left(\frac{\pi}{4} + 2\theta\right)\right)\)is equal to :
Let p and p + 2 be prime numbers and let \(Δ=\begin{vmatrix} p! & (p+1)! & (p+2)! \\ (p+1)! & (p+2)! & (p+3)! \\ (p+2)! & (p+3)! & (p+4)! \\ \end{vmatrix}\)Then the sum of the maximum values of α and β, such that pα and (p + 2)β divide Δ, is _______.