\(f(3x)–f(x)=x\) …(1)
\(x→\frac x3\)
\(f(x)−f(\frac x3)=\frac x3\) ⋯(2)
Again \(x→\frac x3\)
\(f(\frac x3)−f(\frac x9)=\frac {x}{3^2}\) ⋯(3)
Similarly \(f(\frac {x}{3^{n−2}})−f(\frac {x}{3^{n−1}})=\frac {x}{3^{n−1}}\) ⋅⋅⋅⋅⋅⋅⋅(n)
Adding all these and applying \(n→∞\)
\(\lim\limits _{n→∞}(f(3x)−f(\frac {x}{3^{n−1}}))=x(1+\frac 13+\frac {1}{3^2}+⋯)\)
\(f(3x)−f(0)=\frac {3x}{2}\)
Putting \(x=\frac 83\)
\(f(8) – f(0) = 4\)
\(⇒ f(0) = 3\)
Putting \(x=\frac {14}{3}\)
\(f(14)–3=7\)
\(f(14)=10\)
So, the correct option is (B): \(10\)
Let $R$ be a relation defined on the set $\{1,2,3,4\times\{1,2,3,4\}$ by \[ R=\{((a,b),(c,d)) : 2a+3b=3c+4d\} \] Then the number of elements in $R$ is
Let \(M = \{1, 2, 3, ....., 16\}\), if a relation R defined on set M such that R = \((x, y) : 4y = 5x – 3, x, y (\in) M\). How many elements should be added to R to make it symmetric.
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to
A relation R from a non-empty set B is a subset of the cartesian product A × B. The subset is derived by describing a relationship between the first element and the second element of the ordered pairs in A × B.
A relation f from a set A to a set B is said to be a function if every element of set A has one and only one image in set B. In other words, no two distinct elements of B have the same pre-image.
Relations and functions can be represented in different forms such as arrow representation, algebraic form, set-builder form, graphically, roster form, and tabular form. Define a function f: A = {1, 2, 3} → B = {1, 4, 9} such that f(1) = 1, f(2) = 4, f(3) = 9. Now, represent this function in different forms.
