Consider the sequence \(a_1, a_2, a_3, \ldots \ldots\) such that \(a_1=1, a_2=2\) and \(a_{n+2}=\frac{2}{a_{n+1}}+a_n\) for \(n =1,2,3, \ldots\) If \(\left(\frac{a_1+\frac{1}{a_2}}{a_3}\right) \cdot\left(\frac{a_2+\frac{1}{a_3}}{a_4}\right) \cdot\left(\frac{a_3+\frac{1}{a_4}}{a_5}\right) ... \left(\frac{a_{30}+\frac{1}{a_{31}}}{a_{32}}\right)=2^a\left({ }^{61} C_{31}\right)\), then \(\alpha\) is equal to :