If z2 + z + 1 = 0,\(z ∈ C\), then \(\left| \sum_{n=1}^{15} \left( z_n + (-1)^n \frac{1}{z_n} \right)^2 \right|\)is equal to ________.
The general solution of the differential equation \(\left(x-y^2\right) d x+y\left(5 x+y^2\right) d y=0\) is :
The slope of the tangent to a curve C : y=y(x) at any point [x, y) on it is \(\frac{2 e ^{2 x }-6 e ^{- x }+9}{2+9 e ^{-2 x }}\) If C passes through the points \(\left(0, \frac{1}{2}+\frac{\pi}{2 \sqrt{2}}\right) \)and \(\left(\alpha, \frac{1}{2} e ^{2 \alpha}\right)\)$ then \(e ^\alpha\) is equal to :