Let \(A = \begin{pmatrix} 1+i & 1 \\ -i & 0 \end{pmatrix}\) where \(i=\sqrt{−1}.\) Then, the number of elements in the set \(\left\{n∈\left\{1,2,…,100\right\}:A^n=A\right\}\) is ________.
Let α, β(α > β) be the roots of the quadratic equation x2 – x – 4 = 0.If \(P_n=α^n–β^n, n∈N\) then \(\frac{P_{15}P_{16}–P_{14}P_{16}–P_{15}^2+P_{14}P_{15}}{P_{13}P_{14}}\)is equal to _______.
Let the function f(x) = 2x2 – logex, x> 0, be decreasing in (0, a) and increasing in (a, 4). A tangent to the parabola y2 = 4ax at a point P on it passes through the point (8a, 8a –1) but does not pass through the point (-1/a, 0). If the equation of the normal at P is\(\frac{x}{α}+\frac{y}{β}=1\) then α + β is equal to _______ .
If \(\lim_{{x \to 1}} \frac{{\sin(3x^2 - 4x + 1) - x^2 + 1}}{{2x^3 - 7x^2 + ax + b}} = -2\), then the value of (a – b) is equal to_______.
If \(\sum\limits_{k=1}^{31}\) \((^{31}C_k) (^{31}C_{k-1})\) \(-\sum\limits_{k=1}^{30}\) \((^{30}C_k) (^{30}C_{k-1})\) \(= \frac{α (60!)} {(30!) (31!)}\)where \(α ∈ R\), then the value of 16α is equal to
Let \(S=\left\{(x,y)∈\N×\N:9(x−3)^2+16(y−4)^2≤144\right\}\)and \(T=\left\{(x,y)∈\R×\R:(x−7)^2+(y−4)^2≤36\right\}.\)Then n(S ⋂ T) is equal to ____ .
Let a function ƒ : N →N be defined by \(f(n) = \left\{ \begin{array}{ll} 2n & n = 2,4,6,8,\ldots \\ n - 1 & n = 3,7,11,15,\ldots \\ \frac{n+1}{2} & n = 1,5,9,13 \end{array} \right.\)then, ƒ is