If \(f(x) = \begin{cases} x + a, & x \leq 0 \\ |x - 4|, & x > 0 \end{cases}\) and \(g(x) = \begin{cases} x + 1, & x < 0 \\ (x - 4)^2 + b, & x \geq 0 \end{cases}\) are continuous on R, then (gof) (2) + (fog) (–2) is equal to
If for p ≠ q ≠ 0, the function\(f(x) = \frac{{^{\sqrt[7]{p(729 + x)-3}}}}{{^{\sqrt[3]{729 + qx} - 9}}}\)is continuous at x = 0, then
LetA =\(\begin{pmatrix} 4 & -2 \\ \alpha & \beta \\ \end{pmatrix}\)If A2 + γA + 18I = 0, then det (A) is equal to ______.
If [t] denotes the greatest integer ≤ t, then the number of points, at which the function\(f(x) = 4|2x + 3| + 9\lfloor x + \frac{1}{2} \rfloor - 12\lfloor x + 20 \rfloor\)is not differentiable in the open interval (–20, 20), is ____ .
Let \(A = \begin{pmatrix} 1+i & 1 \\ -i & 0 \end{pmatrix}\) where \(i=\sqrt{−1}.\) Then, the number of elements in the set \(\left\{n∈\left\{1,2,…,100\right\}:A^n=A\right\}\) is ________.
Let α, β(α > β) be the roots of the quadratic equation x2 – x – 4 = 0.If \(P_n=α^n–β^n, n∈N\) then \(\frac{P_{15}P_{16}–P_{14}P_{16}–P_{15}^2+P_{14}P_{15}}{P_{13}P_{14}}\)is equal to _______.
Let the function f(x) = 2x2 – logex, x> 0, be decreasing in (0, a) and increasing in (a, 4). A tangent to the parabola y2 = 4ax at a point P on it passes through the point (8a, 8a –1) but does not pass through the point (-1/a, 0). If the equation of the normal at P is\(\frac{x}{α}+\frac{y}{β}=1\) then α + β is equal to _______ .
If \(\lim_{{x \to 1}} \frac{{\sin(3x^2 - 4x + 1) - x^2 + 1}}{{2x^3 - 7x^2 + ax + b}} = -2\), then the value of (a – b) is equal to_______.
If \(\sum\limits_{k=1}^{31}\) \((^{31}C_k) (^{31}C_{k-1})\) \(-\sum\limits_{k=1}^{30}\) \((^{30}C_k) (^{30}C_{k-1})\) \(= \frac{α (60!)} {(30!) (31!)}\)where \(α ∈ R\), then the value of 16α is equal to
Let a function ƒ : N →N be defined by \(f(n) = \left\{ \begin{array}{ll} 2n & n = 2,4,6,8,\ldots \\ n - 1 & n = 3,7,11,15,\ldots \\ \frac{n+1}{2} & n = 1,5,9,13 \end{array} \right.\)then, ƒ is
The domain of the function \(f(x) = \sin^{-1}\left(\frac{x^2 - 3x + 2}{x^2 + 2x + 7}\right)\)is :