Let the eccentricity of the hyperbola
\(H : \frac{x²}{a²} - \frac{y²}{b²} = 1\)
be √(5/2) and length of its latus rectum be 6√2, If y = 2x + c is a tangent to the hyperbola H. then the value of c2 is equal to
18
20
24
32
The correct answer is (B) : 20
\(1 + \frac{b²}{a²} = \frac{5}{2} ⇒ \frac{b²}{a²} = \frac{3}{2}\)
\(\frac{2b²}{a} = 6\sqrt2 = 2 . \frac{3}{2} . a = 6\sqrt2\)
\(⇒ a = 2\sqrt2 , b² = 12\)
\(c² = a²m² - b² = 8.4 - 12 = 20\)
The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Hyperbola is the locus of all the points in a plane such that the difference in their distances from two fixed points in the plane is constant.
Hyperbola is made up of two similar curves that resemble a parabola. Hyperbola has two fixed points which can be shown in the picture, are known as foci or focus. When we join the foci or focus using a line segment then its midpoint gives us centre. Hence, this line segment is known as the transverse axis.
