\(|∫_1^3y^ady|=\frac {364}{3}\)
\(|\frac {1}{a+1}(y^{a+1})|_1^3=\frac {364}{3}\)
\(\frac {3a+1−1}{a+1}=±\frac {364}{3}\)
Solving with (+) sign,
\(\frac {3a+1−1}{a+1}=\frac {364}{3}\)
\(a=5\)
Solving with (-) sign,
\(\frac {3a+1−1}{a+1}=-\frac {364}{3}\)
No a exist
\(∴a=5\)
So, the correct option is (B): \(5\)
If the area of the region \[ \{(x, y) : |4 - x^2| \leq y \leq x^2, y \leq 4, x \geq 0\} \] is \( \frac{80\sqrt{2}}{\alpha - \beta} \), where \( \alpha, \beta \in \mathbb{N} \), then \( \alpha + \beta \) is equal to:
Let the area of the region \( \{(x, y) : 2y \leq x^2 + 3, \, y + |x| \leq 3, \, y \geq |x - 1|\} \) be \( A \). Then \( 6A \) is equal to:
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to
Read More: Area under the curve formula