\(\frac {y_1 - 4}{ x_1 - 6} = - \frac {1}{4x_1+1}\)
\(⇒\frac { 2x^2_1 + x_1 - 2}{x_1 - 6} = - \frac {1}{4x_1+1}\)
\(= 6 - x_1 = 8x_1^3 + 6x_1^2 - 7x_1 - 2\)
\(⇒ 8x_1^3 + 6x_1^2 – 6x_1 – 8 = 0\)
So, \(x_1 = 1 ⇒y_1 = 5\)
Area = \(\frac 12 \begin{vmatrix} 0 & 0 & 1 \\[0.3em] 6 & 4 & 1 \\[0.3em] 1 & 5 & 1 \end{vmatrix}\)
\(= 13\)
Hence, the answer is \(13\).
m×n = -1