
\(\frac {y_1 - 4}{ x_1 - 6} = - \frac {1}{4x_1+1}\)
\(⇒\frac { 2x^2_1 + x_1 - 2}{x_1 - 6} = - \frac {1}{4x_1+1}\)
\(= 6 - x_1 = 8x_1^3 + 6x_1^2 - 7x_1 - 2\)
\(⇒ 8x_1^3 + 6x_1^2 – 6x_1 – 8 = 0\)
So, \(x_1 = 1 ⇒y_1 = 5\)
Area = \(\frac 12 \begin{vmatrix} 0 & 0 & 1 \\[0.3em] 6 & 4 & 1 \\[0.3em] 1 & 5 & 1 \end{vmatrix}\)
\(= 13\)
Hence, the answer is \(13\).
If \( S \) and \( S' \) are the foci of the ellipse \[ \frac{x^2}{18} + \frac{y^2}{9} = 1 \] and \( P \) is a point on the ellipse, then \[ \min (SP \cdot S'P) + \max (SP \cdot S'P) \] is equal to:
Let one focus of the hyperbola \( H : \dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = 1 \) be at \( (\sqrt{10}, 0) \) and the corresponding directrix be \( x = \dfrac{9}{\sqrt{10}} \). If \( e \) and \( l \) respectively are the eccentricity and the length of the latus rectum of \( H \), then \( 9 \left(e^2 + l \right) \) is equal to:

Nature of compounds TeO₂ and TeH₂ is___________ and ______________respectively.
m×n = -1
