\(T_{r+1} = ^{12}C_r (2x^3)^{12-r}( \frac {3}{x^k })^r\)
\(T_{r+1}= ^{12}C_r2^{12-r}3^r X^{36-3r-kr}\)
For constant term \(36 – 3r – kr = 0\)
\(r = \frac {36}{3+k}\)
So, k can be \(1, 3, 6, 9, 15, 33\)
In order to get \(2^8\), check by putting values of k and corresponding in general term. By checking, it is possible only where k = \(3\) or \(6\)
So, the answer is \(2\).
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
The binomial theorem formula is used in the expansion of any power of a binomial in the form of a series. The binomial theorem formula is
