Line 1 : \(y + 2x = \sqrt {11} + 7\sqrt 7\)
Line 2 : \(2y + x = 2\sqrt {11} + 6\sqrt 7\)
Point of intersection of these two lines is centre of circle i.e.
\(( \frac 83√7, √11 + \frac 53√7 )\)
Perpendicular from centre to line \(3x − \sqrt {11}y + (\frac {5\sqrt {77}}{3} + 11 ) = 0\)
is radius of circle
\(⇒ r =|\frac { 8\sqrt 7 − 11 − \frac 53\sqrt {77} + \frac {5\sqrt {77}}{3} + 11}{\sqrt {20}}|\)
\(= | \sqrt[4]{\frac 75} | = \sqrt[4]{\frac 75} \) units
So \((5h – 8K)^2 + 5r^2\)
\(=(\frac {40}{3}√7 − 8\sqrt {11} − \frac {40}{3}\sqrt 7 )^2 + 5.16 .\frac 75\)
\(= 64 × 11 + 112\)
\(= 816\)
So, the answer is \(816\).
If \( S \) and \( S' \) are the foci of the ellipse \[ \frac{x^2}{18} + \frac{y^2}{9} = 1 \] and \( P \) is a point on the ellipse, then \[ \min (SP \cdot S'P) + \max (SP \cdot S'P) \] is equal to:
Let one focus of the hyperbola \( H : \dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = 1 \) be at \( (\sqrt{10}, 0) \) and the corresponding directrix be \( x = \dfrac{9}{\sqrt{10}} \). If \( e \) and \( l \) respectively are the eccentricity and the length of the latus rectum of \( H \), then \( 9 \left(e^2 + l \right) \) is equal to:

Nature of compounds TeO₂ and TeH₂ is___________ and ______________respectively.
m×n = -1
