Given the expression:
\[ \frac{z - 2i}{z + 2i} + \frac{\overline{z} + 2i}{\overline{z} - 2i} = 0, \]
we proceed by simplifying each term. Expanding and multiplying, we obtain:
\[ z\overline{z} - 2i\overline{z} - 2iz + 4(-1) + \overline{z}z + 2zi + 2z\overline{i} + 4(-1) = 0. \]
Combining terms, we get:
\[ 2|z|^2 = 8 \implies |z| = 2. \]
Now, we find the maximum value of \( |z - (6 + 8i)| \):
\[ |z - (6 + 8i)|_{\text{maximum}} = 10 + 2 = 12. \]
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: