We start with the given condition:
\[ \text{Re}\left( \frac{z - 2i}{z + 2i} \right) = 0 \]
Let \( z = x + iy \). Then,
\[ \frac{x + iy - 2i}{x + iy + 2i} = \frac{x + i(y - 2)}{x + i(y + 2)} \]
Rationalizing the denominator:
\[ \frac{x + i(y - 2)}{x + i(y + 2)} \times \frac{x - i(y + 2)}{x - i(y + 2)} \]
\[ = \frac{x^2 + (y^2 - 4) + i(xy - 2x - xy - 2x)}{x^2 + (y + 2)^2} \]
Now, the real part of the expression is:
\[ \text{Re}\left( \frac{z - 2i}{z + 2i} \right) = \frac{x^2 + y^2 - 4}{x^2 + (y + 2)^2} = 0 \]
This implies:
\[ x^2 + y^2 - 4 = 0 \Rightarrow x^2 + y^2 = 4 \]
Hence, the equation represents a circle with center at the origin and radius 2.
To find the maximum value of \( |z - (6 + 8i)| \):
This represents the maximum distance of the point \( (6, 8) \) from the circle \( x^2 + y^2 = 4 \).
Let the center of the circle be \( O(0, 0) \) and radius \( r = 2 \).
The distance from \( O \) to \( P(6, 8) \) is:
\[ OP = \sqrt{6^2 + 8^2} = 10 \]
Therefore, the maximum distance is:
\[ OP + r = 10 + 2 = 12 \]
Final Answer:
\[ \boxed{12} \]
Given the expression:
\[ \frac{z - 2i}{z + 2i} + \frac{\overline{z} + 2i}{\overline{z} - 2i} = 0, \]
we proceed by simplifying each term. Expanding and multiplying, we obtain:
\[ z\overline{z} - 2i\overline{z} - 2iz + 4(-1) + \overline{z}z + 2zi + 2z\overline{i} + 4(-1) = 0. \]
Combining terms, we get:
\[ 2|z|^2 = 8 \implies |z| = 2. \]
Now, we find the maximum value of \( |z - (6 + 8i)| \):
\[ |z - (6 + 8i)|_{\text{maximum}} = 10 + 2 = 12. \]
Let \(S=\left\{ z\in\mathbb{C}:\left|\frac{z-6i}{z-2i}\right|=1 \text{ and } \left|\frac{z-8+2i}{z+2i}\right|=\frac{3}{5} \right\}.\)
Then $\sum_{z\in S}|z|^2$ is equal to
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.