The given differential equation is:
\((x^2 + y^2)dx - 5xy\,dy = 0.\)
\(\frac{dy}{dx} = \frac{x^2 + y^2}{5xy}.\)
Let \(y = vx\), so \(\frac{dy}{dx} = v + x\frac{dv}{dx}\). Substitute into the equation:
\(v + x\frac{dv}{dx} = \frac{x^2 + (vx)^2}{5x(vx)}.\)
Simplify:
\(v + x\frac{dv}{dx} = \frac{1 + v^2}{5v}.\)
Simplify further:
\(x\frac{dv}{dx} = \frac{1 + v^2}{5v} - v.\)
\(x\frac{dv}{dx} = \frac{1 + v^2 - 5v^2}{5v}.\)
\(x\frac{dv}{dx} = \frac{1 - 4v^2}{5v}.\)
\(v\,dv = \frac{dx}{5x(1 - 4v^2)}.\)
Let \(1 - 4v^2 = t\), so \(-8v\,dv = dt\). The left-hand side becomes:
\(\int \frac{v\,dv}{1 - 4v^2} = \int \frac{dx}{5x}.\)
Integrate both sides:
\(-\frac{1}{8} \ln|t| = \frac{1}{5} \ln|x| + \ln C.\)
Substitute \(t = 1 - 4v^2\):
\(-\frac{1}{8} \ln|1 - 4v^2| = \frac{1}{5} \ln|x| + \ln C.\)
Simplify:
\(\ln|x^8| + \ln|1 - 4v^2|^5 = \ln C.\)
\(x^8 |1 - 4v^2|^5 = C.\)
\(x^8 |1 - 4\left(\frac{y}{x}\right)^2|^5 = C.\)
\(|x^2 - 4y^2|^5 = Cx^2.\)
Given \(y(1) = 0\):
\(|1^2 - 4(0)^2|^5 = C(1^2).\)
\(C = 1.\)
Thus, the solution is:
\(|x^2 - 4y^2|^5 = x^2.\)
Final Answer: Option (1).
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.