Consider the different cases based on the value of \(x\).
Case 1: \(x \geq 0\)
\[ x^2 + 2x - 5x - 1 = 0 \implies x^2 - 3x - 6 = 0 \]
The roots are given by:
\[ x = \frac{3 \pm \sqrt{9 + 24}}{2} = \frac{3 \pm \sqrt{33}}{2} \]
Since \(x \geq 0\), one positive root exists.
Case 2: \(-1 \leq x < 0\)
\[ -x^2 - 2x - 5x - 1 = 0 \implies x^2 + 7x + 6 = 0 \]
The roots are:
\[ x = -1, \, x = -6 \]
Only \(x = -1\) is within the range.
Case 3: \(-2 \leq x < -1\)
\[ x^2 - 2x + 5x - 1 = 0 \implies x^2 - 3x - 4 = 0 \]
The roots are:
\[ x = \frac{-3 \pm \sqrt{9 + 16}}{2} = \frac{-3 \pm \sqrt{25}}{2} \]
No root lies in the range.
Case 4: \(x < -2\)
\[ x^2 + 7x + 4 = 0 \]
The roots are:
\[ x = \frac{-7 \pm \sqrt{49 - 16}}{2} = \frac{-7 \pm \sqrt{33}}{2} \]
One root lies in the range.
Total number of distinct real roots: 3
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: